FlinkNote

sENE

e Stream Processing with Apache Flinkhttps://www.oreilly.com/library/view/stream-proce
ssing-with/9781491974285/
o (ETFApache FlinkRUiRLMEER) https://book.douban.com/subject/34912177/

E: AXFEEREY (ETFApache FlinkgSiRb2) 1-8EHIEIC

B1E WSHRLIEME

Apache Flink 2— " 3H LS|, BEEENME TRANNAPSESIEIRNSRGIEN RER.

1.1 (&R IR

JUHER, SURMERMEER I PTUEAE, 5K, HIRIKRENER—BEEER, REQTIR
THteE T EEX LRI ERNAE.

REHEWSTIAHERIME X537 FARpERInEIR 2

o FREEUME
o DifTELLLIE

1.1.1 SRR

RNEMER B S ENPERSTINAER, NI FIFENK(ERP) RS, ZRRREER(CRMEAFIET
MERIN IR, XERGEEIRITERAVSIRGERR(RBRERFF S SR ER (SRS EIRER
%), WE1-1F

af://n0
https://www.oreilly.com/library/view/stream-processing-with/9781491974285/
https://book.douban.com/subject/34912177/
af://n5850
af://n17
af://n28

(ontact Order Click
tvents Response ~ Events Response Events Response

(ompute

Storage

Transactional
DBMS

Figure 1-1. Traditional design of transactional applications that store data in a remote
database system

SN AEFREEENE R, XN REFRI RS SR,

RIRN IR Z BB SRR ARMIRSSIRIT. HIRSHIRITAEL. MZANAERER.)8R
UNIXEZ: —HSHEBYF. BESrNAERZBITS/ LIRS EEEEMEER, XERR
FSRBGIREEOHTES, WIRESTful HTTPEE, EAMIRSHKITESE, FERBIEEXEHH
EROMTERE, ASMUIRSEHULRTREIRAELRLI, SRFEES. FNSEFE. R
SHFELFENRARS BRI TEFARESERINERP. BN - 2R T — MAIRSEM.

T | | Apolation | | REST

Senice

Applaton

Seniie Senice

Figure 1-2. A microservices architecture

1.1.2 FFBILE

FHEADSMRBEEFR TSR LREXT AR SEERNEMERN LR, A, BS54
EEESHE/ N EENESIEERST, MRILBSHT, SSIHEUEEEMNE.

STFRFEER, HUEEESHISIRECES, MAREETESHREE LETOTES, UECER
BForERILENERERERHE. ATERNECE, SEEESUEERAEENEIESHRIEER
BER. BEHIESHZIEECENSEIR AR5 I (extract-transform-load,ETL),

ETLISFE

1. NS AR RENAE
2. BEERRNBRART I, TTREEMIERIE. HIEAUE. R, RERENER,
3. RIS EMEE DT IEETER .

ETLISIEJREIFHEER, BEFERA LERNBRSZRREHEER. FTLIEFEERIET, LUR
FEUR R hRIERRIE .

af://n39

—BHIERSANIECE, MOULNEHTERNSH. BE, HUECELEAD/AME

1. B—RETEHREER
2. B FhRBVERNFEEIS (ad-hoc query)

HIERCELILES T TXAMESR, WTEN -3k

Transactiona
DBISs

il
Proess

Figure 1-3. A traditional data warehouse architecture for data analytics

<%, Apache Hadoop&SESRIFZEIWANEBR AR Ao ai i —EBD .

o KREHRGNBENM., HARFAEMERE R SWIFHEEHadooplI D IR S(HDFS), S3
HHEMABELHUEFEX (MNApache HBase), MAREITEEIEFHEEXRISIEERS,
Apache HbaselLABUNMUBAIRM T EXNFHEEE.

o HERMEXFMFMERFATHIEIETLIEIEHadoop LHISQLE|EEH /TR, FliNApache
Hive, Apache DrillsApache Impala,

o XFERIIERRUERIAIA—FPSERe

1.2 KSR IR

HLEEGHRABFRRERNRC—FSMNMBAERFSTESEREN, BEEEHNHETE
EERIBES.

af://n75

o LNRREFRIEISHN, EULUKIIASERTESHRE, SEMNAESPEREEERNSTE
NEE.

o RUE, REAUEHASARNEFHER, SEEFERE. AHNH. SAEIMBEER.

Apache Flink R P RS IEEFREE AR A SRR+ B S B niEs U FiEER

“HH Application Logic

Local State

Periodic Checkpoint

Remote Storage

Figure 1-4. A stateful streaming application

BARSHRLENBEFESNFHRETRNCNBASS. FHASHEEHENSREMR. M
WENEAR., REEENMNAT, XEREREELSEASANINT. SAEMRTRRTLSHERE
FRRVMERSE ZREN. BTRESHGHFEN, SM4L2URSERNIRFEXhEMEERE. 8/l
MRIFEOFHREMHBAETRS, Apache KafkaZ&RZIKIDH.

HFSMRRE, $Hink ENBRERRBREFISH SR RRESERAMRRE.

o TEXMMARENT, FHRASHEKSAMN BASHE, AILURHENIRFERE].
o EHMMEIERT, FinkETMEARIIRERRERSHEEFHES LASENUERKSEEIN
SRR FAERR .

gnRiAmA, BRERGER—FMERMRIEINRITEY, JLUBRTFESAREIASL.

ETXH, FINB T ERERRSRIE LR =N e

1. MR BN AR
2. YEREERN AR
3. RSN FRER

1.2.1 HHIRENE R

FHERNBENAERERRSHRMBER, SHRISHRAERSET N ARERLSZIE R E
=L

SHRHBN AREREMESIERNRR. SIBESHEEMARRESTHARTEE, FHSRABE
FAUEREAFIRE. EN-5E5 7 AEHIKaIRIRN R AMAIERS SR,

af://n109

bl
Ny

0
0

Figure 1-5. An event-driven application architecture

E-5hRIN AR RRH ES A EEE.

s M HBERSEBHLAXZIEGRE, 5 MBAERERS— N AEFRENEG (WEH
B _CiEhy) .

s EHESHBRESZLDT, FHIRHFE. IFEENEHER.

s BTRAERHULEEREN, FEILEFEERS SRS,

o NFEFEALIRERET &.

FHEHHMBERZTENNRLGESIZEREER. AIFMENRCERSRFEESE TH 4R
SR FRRERF. N ARIERZ ORI RA M ARSI B SR AT IR EIRTE 7 A LASEIAHAA TRY
A55i2%8, Apache Flink @i TiX3EMN TR FRIAFEIFRIILES,

1.2.2 YiREE

SESNARBTREEETEARMENEIEEME, XREELEERS. SHATHRSE. oHhilG
B, AFEFNERRS. ATESENNBEZS MEREEMERN, MEXERFAHUFRIE
EREEERE. ATERESHERNSEERESIMFRNRERS, LIESEIELEEEE.)
g0, W ERRHIREREE LSS SEERE. WESEFMHERRS T, BT XMEESS, &
EEFECARSRE .

BEARFERAPEIRNER S EREPETURL, ERERMAST. 5—FoEE2ERSHAE
kOREH. FHHSFMHATEANISR. BENERE (EHEETFinkidE M) KSEHRELE
FERLSAEIEFMED, REXRNAIRIEIEEE. BFlinkRER— MRS ENARRSGERN,
EALSHFIREMEEIRFENES, MEN LR AL EAEEIE.

1.2.3 R

MO IR EEINEMR, FEIRERNSHRNSICEENER. BF, RANAREFEE
RIS BB MBEUEFET, WEUEEESRETE. RSN BRI E SR
DATE(YRIRMN FRFE PR SER B R, 20BN -6RTR.

Database

Dashboard

Anlytics
MMamn"" &

| R — ol

Figure 1-6. A streaming analytics application

ALAETERERN RIEFURLES|E ASMALELER, SREFMHEN. SRS ERINES
HELUREHER.

af://n130
af://n136

BS—IRRIZ, FlinkiESFR T HIERAIDHTESQLEIR

1.3 FFERL AR

B
1.4 Flink REE
it

Apache Flink2RENE=RoHUnLtER. BUSEIENREE AR AHEmRITRLE.

A4S EFlink g -

o [ERYSZHFRMEFIAERIENE M.

RS —IR (exactly-once) iPIAS—EUEHRIL,

FAEME A NN ERRIER, Flinki BEREFTLY BRTESTARZ ST,

2 EIRITHAIAPI

ALURMNEER IS ERNTEERS, tNKafka, Cassandra. Elasticsearch, JDBC. HDFS, S3

* BEBEXEITRILNAER, SNEIEED

o BEBEASERNAREFIIKSIEIRT, EREVAINEEFCEHE B EILTFBEIARAIFInk
5B, .

o RULFHAVIEIT

o TIFHtALIR

o WHAEKRIF. APIAZAE. FERAVRITRIN TSR BiERZEAFlinkEER AR RN VM
b, BEEIDERETHFXE TFinkaIR B

B2E AR

AENBRENBRGIENEREL SN S EAMRIEZERYESK,
2.1 Dataflow4gizihiR

2.1.1 Dataflow[#]

DataflowiZFiBE R NERE,

o HpHRiRAEF, FHE, BUREIREN.
 BFRYIRRNMAERNEBFIERET. SIINAATIRBEUE, MEEHTIHE, ARBEER
HEE iR TH— P,

af://n145
af://n149
af://n176
af://n180
af://n182

o RBMANRNEFRASIER, SAERHIRIEFRVEEL.
o HiERELRELE—MERII—MEIC.

ER- 12T — M IERER, ENXERTMNRPREFHTE— 2R,

le.image-20201029121349342

GRE2- 1 RREIERERAREEE, EACIEETIHEEENSRIE. ATHTEIERER, B
BIEERAE IR ataflow], ZEFMIRIA TIRFEATWHNITRY. B0, WRBAMERSHzIAE
51%, 84 BFIEENAFHTESEARRRYIENES DIETT.

E2- 287 T ER2-1 RS ERYIEEERE. TZi8DataflowBEd, TRAKREF, MEwE
DataflowE+, TRAFIES. FMESREHE—FBORIBANLIE.

Tendig

Dl
ik

Figure 2-2. A physical dataflow plan for counting hashtags (nodes represent tasks)

2.1.2 BRHITIUESHIT

ALALAARRIB S =0F AR R E R AT

B, TLNEMNEFHEBANSRA TR, FESEFE CHTHITHERRERES. XM
ITIRNEIEHT. $EFTIFEER, EAERIPEARITEHESHEIZS N ARIMWEET R EFHT

17.

HRX, ALULAREFHUES HTRITERSAREERNTT R, XMSRERFHTIRAESHT. £RE
SHT, ALEFFIRERITERIR.

2.1.3 EUREATIRERR

EIE3SIRERIEE X T BRI S ELa B DataflowBIRIIFRRIES. EXE, BRIIEENE—LE
WRIEIES ARG, G0E2-3R7.

aln BEOO
Forward

o HERRIRERIEIRIESTIEIURIESS < [A—M—ithdH TEHRER. MR MES A TRE— I
fr L(XEHBESHERRFRRID), XMARRIRER 7 WESEE.

o [TERIBEEMNMIBRAEASEFIMBHTES. FAXMRIREFEEFTRWEERE, il
PZNEETER

o EFREMNRBEIRELNSEEE ARIESHERRRHEIETSBERAESLE.

o FEHSRESSEETUITI BN D ECSIESS, LUEREIIE

af://n204
af://n211

2.2 FTHIE

TEEEN@EDatafllowAIMRZAZEIFTEIRRGES. FACLHERERNEN: BiERE—MS
ERIEETIRSRIFF S

EIERMAVGIFAIT : et AR EEGE, R ERNEREE. ERIRZEE. SSUENINEL
7. BRS|IBERCRF

2.2.1 FERFIEN

MNTHSMENARER, BAIEEXOEIVAISHITRIE, SEFILES IEEREaA. FITIHENS
EERFES KA, BTRNAEFESET, FEBATEELRAY, EERdEFREEHnT
RIEREEE, NMAZR, RGBT ERIEAENSIERMER ER) , BEENXRS
MSEHEAER (B01) . RIBERMEIRERRXMS AR,

2.2.1.1 #ER

ERETUE— N EHFFEIME. ARL, EREEEHEEEEPERIE NIRRT EERE.

FEgERT, WELEARHTER, IS, RIENAEFNAR, TS XOFIER. &
KIERSESILER. a0, 10mspIFSRERERETIIE10ms RS, 5E, 102RPAI95%E
IRERIRE S WHISMAE1 021G EIRE,

& Apache FlinkiXEFAIIMCRALIES (AT LURAHER L EMRIZER,

2.2.1.2 &0t

EREENREFLEBENN—FEE——CHLEERR, BHER, FHESFRIIRSESRME
PARLIES DASH,

FEIENR, WEERBRTEAIAERR, RELEF—ERTMEE. TRAART, BES
EHRRFEGLIERANRHISHIEEE,. Bk, TEXONERRERESLE, MRFLT
ERARERTAIMERERRE.

—BEEARAEREL TTHNEAE, HIIMAMEATHAETSN. NRRFHELGETHAIEED
AU RIRINEE, RTXAIRESTEATR, YEIESER. XM EREHEEIRAEE.

af://n225
af://n231
af://n235
af://n243

2.2.1.3 ERS5HMIT

RS, NiZEER, EEIIEN RRMIIAET.

* MRBAFERRIEAEEARCEEETER, HIIMLTEENBEASELE WEXWTE
nt) .
o AR, MRFRFHMIRREENITR, BHBHRET, VRFHFIREEERE (FHRWTER) .

PHRERTREELE. R—NRFETUEREHITEME, SULEEENRERITEZIRE.
M—MRIFAIS U2 FHTLIE

2.2.2 EhiEiR EROIR(E

LS | EERERE—ARERERERIE. ERiEhEER. XERETLIRRIgpkDataflowE KA
FRAMAREE. AT, BB ERERARVEE.

BFRTLIRTOIRER, BAILIRBEIRERY.

o FTINSEEREPMERPERIRE. ok, — P FHHLE REBRT EUHLEGE, BAMRE
RSREE. TRRRFREBSAHITH.

o BFRSERFMEPMILTRIEINFGIES. RESBIEANFMHKEN, FAEERRSH
ROMEZIEPRER. BRERCIEN R EFH TS E S E R Rk

2.2.2.1 FiEEANNEEE D

RN SRR IR ERTERERR SN R FE S,

EHRIEA RN IMBRS SREVF SRS HASIR B SRR TURVIR(E. SNSRI N ZIBHEFIR
HuRis.

HiEmbLRUESIMBRFEEBI MR, USRS ENEFIR IR,

2.2.2.2 EHURE

HIRRERPIEEME (single-pass) , BABMEMIZLE, BF—ME—MULESM, FAXEMH
R TR, FPE—RYEREIR. ARk, HRIRIRMEURESR, FBLERRIBRE

af://n251
af://n262
af://n273
af://n281

JOOREC

Figure 2-4. A streaming operator with a function that turns each incoming event into a darker
event

IR ENEFILURZ S MAAATES MLR. IIETLBIE—NRD RS NREE SR
B NRRIESEERERIE.

2.2.23 FNRE

FNRSZIIESMIANSHITERNVRSIREE, LS. 2MERXE. RESBRERERE
B9, FESRIRESSEANSHEES U ERFIRSGE. B2 587 —NRNS/NRE. BEFRGS
RIRERIME, FHETIEMENSHERIEERE.

&

Figure 2-5. A rolling minimum aggregation operation

af://n289

2.2.2.4 BORME

HIRNRRS SIRE—FY, ENEHSEMAERRS. B2, BREBECINENEES
. GIIRPAERIEL. 7T ELRR Rt EXRE, FERBXLRELEPSESE. £
AR, BAMFTICEORE.

BOESHERR L#{T—LEBNER. gl RE—/ERESI B E RN EER.
EXMpRF, SRMEETE/LOHMREMERERE TS, XIHMERRNRAXEIE/LD XD
BERYEE.

BRI\ — TRFMR TR KERRNFMAEFRE), FLRIXERE VTR, =
HEFRELE RS ES RIS, BOMTAE—EREEX. BOREREMNeIEIIEE
., BRLEGSERAPLER, LIRMARTERTEE. BORBIEETUETHER. #E5
Hthghig=E s

TEMEERNEOREANEN

2.2.2.4.1 iZEhEO

FEOSFEHARIKERENAESNET. SEOLREIN, IEFEHEHREER—MTES
it TE, ETHHRRIEOEX TEMAITHERWET 205 M. BR2-68R 7 — M ETIHERY
FNELN, BRARD M TRERE. ETRERNRNENEX T HEPSEEaREER. E2-7
BRT— M ETHENRNEN, SREMPERERIRET, FE103#is—RItE,

af://n295
af://n305

i lngt

{ 0[] | [)

Figure 2-6. Count-based tumbling window

Fjedfme ntenal

r-------.-....-------1 r-...----------...---1

BORCER: BOCHON:

L--.-.--.------------J L-I.I----------..I---J

=110 =111 =110

Figure 2-7. Time-based tumbling window

2.2.2.4.2 gsh&ENO

BHEOSSEG D RIEEXNMIATFEHEESNES. Eit, — 54 JRETSME. H(IEIE
ERRIKEBIRERE X BHNEL. E2-8PRIENOKEN4, BaEkEss.

af://n311

Fed engh

dURAL

—_
' =

2.2.2.4.3 &iEENO

SREOEERANRNLZSPIEESR, EXEESETD, RBONENENHFENA. EE—1 7D
FELBPTANNRERERF. EXENNAERFT, BMFEERER—IENSEHSZ—4A.

SEELRIESIEMAR (session gap) MHEMHITHE, S[EERENX TINARIECKARAEEER
B, (BHENRBAERKI—RIERNRE SRS HEEHANNSIEEEXEAT)

BHORESRCETRIRN TEHSBEX HEEX S EE.

o MAERESAEREELFEA, XIINIRIEEOEMRDHRER
o ItHh, ATEREE, FEEEMERZAMEEOTRREIEERRNG SEIERIFTER

2.3 fFEE N

2.3.2 QhIRRYE

SLIBRIEZHNEE A RISAYRTE]. AMERSIEE O EEE—RETEA Y MISEAEONFRESME, Bl
BRAOASHRS SR, WNE2-12RT7R

af://n316
af://n329
af://n331

il il il

Q00 I 1
B0\ A\ R4S B2 \(BB2)

vy \
VoL \

Vo
AR \

000 [00000]

Processing-time window

Figure 2-12. A processing-time window continues counting time even after Alice’s phone gets
disconnected

2.3.3 S-S
SHME R RE IR R, BB AN R RS,

E2- 1387 BMESEMEER, SMHRENBEERbTSEIRAERNEOS, NMRRSER
EREZER.

af://n336

il il il

| Q00 | |
08:22:00 \\ \\ \\08:22:45 08:23:00 ‘\08:23:20
Vv \

\ v \
\ \

Vo
LA A

| 000 00000

Event-time window

Figure 2-13. Event time correctly places events in a window, reflecting the reality of how
things happened

FTICHERIGIBEEE SR, SHAREFHINFREFN, SHEEORNTEEEERNG
£

B ERSERTE, BMERELREIRRIER T, HAEAILGRIESROIERE. i, S5TER
REGRS, REEAREEEREEBREIEE, EHMER, (RULUER—NRASTREEHE, mESE
T RSERS R ERI—HE,

2.3.4 7Kfisk

FBFALE, ERMNXTHEHMNEEONTICE, HNR2E T — P IEREEZERSE AR ES
AEORMERT (HARMRELDREFTTRITE) ? Bk, RNBESSATERERNEENE
TEANMSERZEIRENESHE? FREISHARFN AT TN BRIMEHERAOSTER, XL
T BB IERYESR.

af://n347

K watermark E— S BHEER, CE— NS CEERIBEEMRESZNNEES
HEAT. AL, KLSRET—NBEN, BNRALMEE, SR ERUERHEATHK
(IR, BB S B AR N FTHISE M, KR F B RO RS ST HE
WRET .

IR T ERASEAREE L Eltrade-off,

o RHAIKNEABREIER, (BRHBMEIAER.
o RFAVKLTHHRBER, ERNHRESNAIEE.

AR RS AN RIS B K (2 REIERIE4.

2.3.5 {EERNE SRR

LEZMRRIRERIE, BRPASMRNERRR TRAIFMBIIEE, AHAFIIEEERI OLIBRTIE?

SXE, ARUERT, GENEHELEERA.

o WMEREEOSINT BaEERAYER.
o LIFFEEHICIHREERN, EEFAXTERIERER, LEERESEN.
s B, WEREEMRMTRFBHEEZRER, XT—LRAFIKRTEE— M IEENENLE.

2.4 RSFI—EHRE

WSEHIRLETTUAE, HIER—RITERTEEE. ATHEER, REE—RNAEHEZNE
4 ERPRREOBIN, HERESHENER), BRESEFEREASHIRERRES T EEiIMELATE

BTSRRI T, REESMZEREAN, HITLUEREEETPEEFEA—RLRLT. ™
AR RS, E— M MRBIEIERE R ER— MR AIEER.

TR I ZEURENERERE, ELA/IVORELAERRSTIRER. 797 REMASHIRAN,
BFEESME B ALLERNE MR TEMBESHE. XHFNBETLIZITE. 8. &5A1tm
BISEMavHEEE. BOZTX.

SIHFARSEFEHHRRS LI EAIHkEL:

1. RSER: ZRAFTEAMERRES, ARERCAZHREMR,

2 KEH-G: FITUHREER, BNERIRTINSHEANNSS. FsE, mrEBEn T, &9
PUBE—MERISIRE, FARZEEESN O KAVAS, Fla, HnEEEkE —AERRAIN
i, JURAARERS XRMEARRIERES.

af://n362
af://n375

3. WBHE . BRNERFFHFRNB=MIESARNMSEREASTLURE, FEIMEEHERE
ROIBIR MR B IERRT.

2.4.1 {E5580%

RV HPHBEFRSIEEEE, NDLEHNSE, MRRSESERHEESR, KEENEREERE
Y. OIS MY EERIEE H IS SRR I LUIESIE T, ERERIEERINE ISR
.

MFRMNRTPIENEG, ESHTUTER

1SN, BEEHEFERRS;
2. EHFiPERRTS
3. ISR,

EXELRPIEA— MBI ERE, RELUERE N EESMRERRPaELE. 4
., = EEEIRIERARERRU TR RESES—FRN, BHEKD? RE
EHTREBRSERN T, RERESBERD? MELEXLER T, BHERIERE?

2.4.2 BR(RE

Eta RS S, rEXLREMERITES, EAMMBIEI T AS RS IREHSs0. AL,
IREEHEX, WSREENTFREILN. AT, ©RGES, XEGREHRFE. AXRaETRE
LER{FBE(result guarantee)>REX BAIEHMMMERRY1TH. BTk, FHAIEE 7 IRGIES 21214
B LR AR BIRIERRE.

2.4.2.1 EZ—IR(AT-MOST-ONCE)

HIESEME, KEPTEMERMEREERREZLAVNSNEREXRNEE. ES—RRURIE
BNSEHESRE—IR. #91ER, RETLUEREERFSH, MUTAIEERBREROERE. X
MSREIRIRIE AT TREE", EARERREEATESM A LIREXARIL.

2.4.2.2 E»—R(AT-LEAST-ONCE)

EARZEHILHFRNNBERT, AMIPESHREER. XMRBEMRIEFEIRAZES—R, ZEKE
FrESHERSHLIE, FEEP—LREETRELESIR. NRNBEFIIERIEHNERATERNT
B, EEETRETLUEEN.

RNTHRREBEL—RXMPERRE, TEG—MHEKEM(replay)E——Z24MiR(source), BEANE
ME X (buffer),

af://n392
af://n407
af://n411
af://n415

TEHMERHRIEED—RNGT

1. BASHATEMESUENGATRE, LMEERESKMESTILIER replay),
2. Z—FDERERICREIA. LRSI SMERERETXT, BREETHMEESERAX
TEHERXMEL T, RATLAEFZSMN.

2.4.2.3 ¥5lf—IR(EXACTLY-ONCE)

Bif—XRETSIRIE, RESH. EEREMASBEHER, MESIFHIRITLE—
R, NERLEFRR, BH—RXERERINNNAERSRUSSERNER, RIFERMAREESTRK—
.

BifR—XZAZEL—XAEHRN, FEEERNSEIL AT,

MEAESEREZE, S IENIZAE— N SHNEHNERELRMERE L. BWFsEIo:

o HEMEHMELMX—ERIN—MHIN, BRENSSEAEERETHE.
o 1R, FlinkfEREERRBUVEISSTIM—RERFRILE

2.4.2.4 iRk H— R (END-TO-END EXACTLY-ONCE)

InEiRtRIEHEIEBE N IRGMERK G ERERIERY. FUKE LS MAGEREE CRIRIE, T
EERIIRAIES BEEG PRI MESRRE. BRHRIBIRESESFIHIEANENX, t
n, IMEREL—IXRRREXESER/IME, EENEMBHERERER—R, PBAXMEED R
U HE—IRAY,

583E Apache FlinkZ24

EX—EH, FH(IXIFlinkfSEHITT—NSERRHNE, FHEA T FlinkMARIEAIZEITICIZAIR
SEIEFEXIERE, Rt FNERBRFInkISHIURE, ReEiiih RN A+ 20 IR R
SHY, FTIET BROBEHE.

3.1 RHERE

Fink@— M ATIRESAFHTHIRRLEBNSHRRER. FinkiRERS M HIEEN, XEHIEEESHE
Zatlas a7,

DHARIHERRIVE LR
1. SR EERN S ENEE

af://n427
af://n440
af://n444
af://n448

2. HiEthiA
3. AN AN EIREEE
4. SRS

FinkA B RELMAEIXLINEE. ERXFFREZONGE——SHRBERLE, EEFRATRSHR
BRIFFRTEMAIEZR S E A% O8R5

o FlinkSERBFHIFREER(WApache Mesos, YARNHIKubernetes)SSpk{SRIF, {EtBrILABCE A
TR SRR T,

o Flink MRHFANSHRNER. Bk, BB THEHDFSIXEFNSRRMHRERHSIXIFRNNIRE
fi&.

o WFEARREFTHNMSERE, Flink{kiEtTApache ZooKeeper,

3.1.1 2EBFlinkFFEERYAH:

FlinkE2 BN ARRVEMAER, BI—ET/ERIT R BRER. XL4A{42jobManager.,
ResourceManager. TaskManagerf[IDispatcher, H1FFlinkZFgjavafiScalasEIlgy, FrLARREAY
EhzfTE)avaE@it(vm) k. SEMESHERSREE FENNF/NEoBINE.

3.1.1.1 JobManager
N FRETE

JobManager2#=H] BAMNARERFNITHERE, S TNAEFB— MY obManagerizhl. (—X—X
)

* JobManagerfa IR ENTRIRIFER. 1ZNAEFE—FTBAYobGraph (—MNZIEEIER
E) F—NARMMHER (JARSHESE 7iZNFFRFATEXERRIR. BEFIEMRIR) .

* JobManagerf&obGraph¥&i & /yExecutionGraphHIIRERIRE, Z#EREBRATHITHIT
HESSER.

e JobManagerMResourceManagerig RV EAYEE(TaskManagert&)skiiT(E5., —EEEKFIR
iggIEaITaskManagert, ©Ri&I§ExecutionGraphfUES K HELLEHITE N IRITaskManager.,

o EHITHAIE, JobManagerfasRFiERERPHHARRIE, WISESRIINAE.

3.1.1.2 RecourceManager
RREE
Flink¥s AR FIERIREEF QIYARN, Mesos, KubernetesFIZBE)IRET S MERETEE.

e ResourceManagerfa EEIEFlinkpIBERETT---TaskManager{&,

o HJobManagerigskTaskManageri&ht, ResourceManager&isSEMEIBETHIER
TaskManageri§BRIZ IR {HL8)obManager.

o fN5RResourceManageriZ B BIBRIFESHE obManagerfJigsk, MIResourceManagera] LIS
FIRMENHE, LRRRMESHEEZMTaskManager,

¢ ResourceManageriffa =2 1L =AY TaskManager IR E &R,

af://n473
af://n477
af://n491

3.1.1.3 TaskManager
TEHRR, BUTESHY
TaskManager2FlinkBI T{E#FE(worker process, TA)
o BE, T Flink&ERFhEZ\TaskManagerftiz{T.
* B TaskManageriZit—EHNERME, ERVEIEIRT T TaskManagera] AITANESSEIE.

o ftTaskManagerlBElZIG, TaskManageri§ERIEIEMEIResourceManager,

o ZJobManageriZXkIERIETR, HRIEResourceManagerfiigzs, TaskManager[@
JobManageriZ{#t— ek S ME.

o #AIEJobManagera]LUSES S ECEUER, 1LTaskManagerffTiXEA(ESs,

o fEHITHAE, TaskManagerSiziTHHRIRBAERAREMESAIE M TaskManager3TRETHE.

3.1.1.4 Dispatcher

SRFEEE

Dispatcherf@t—NRESTHEEOLEFAFHRAEHRITHIN AL,

o NIRRT, ©iEajobManager, HER ARG ERMIT.
¢ Dispatchen®iE{T— M web{{ R R M LT IEHITHISE.

3.1.1.5 B{F218E

4, Start
5. Register slots

App ResourceManager ructslutoffer
1. Submit ~3
- L 9. Exchange
Dispatcher S errant JobManager 7 Offers_lots data
submit application 8. Submit tasks for
execution in slots
3.1.2 M AERE

Flink Sz FRAZ R AT LA AR RIREI R ERE .

3.1.2.1 {E3E

EXFMENT, FlinkIAEFAFTEEI—NARXHR, FHREFIHERE— N IEEEITHIRSS. %R
EAJLAZFlink Dispatcher, Flink JobManagergYARNAYResourceManager,

o RN FAEFIR3EJobManager, B MEIFHRHITRBIER.
o NN AR HIRASEDispatchergYARN ResourceManager, Ei5REE1JobManagerHig3s
RFTER, f5JobManagerS AT FfER.

af://n505
af://n524
af://n535
af://n537
af://n541

3.1.2.2 FEtEst

EXFMENT, FlinkBREFEESEE— U AREFRENSHRERET, tilDockeriHg,
o ZERGIAEIEIEITJobManagerflResourceManagerfy{{ig,
o EBRBNERBEAY, B©<BnEsIResourceManagerflljobManager, FH{T4ERINFFER.
o BRI TN ARFINRIRATEIETaskManagerdzs.

o MXMNEGEINERSEmEsTaskManager, Bi&EZEIResourceManagerFHEEH
&,
o 1BE, INEPRESIREENKubernetes) AERIMIEE, HASEREMENERRINAE,

F—IMEILRIER, B FMEERTHIRSF.

3.1.3 (1T

TaskManagera] LARIRFHITS MESS.

XEAESSETLA

» EBTR—BFEURFHT).
* FRBFUIESHTINTES
o EERXBFRMMBEFNFESRAHT).

TaskManagerigHtEIEL SN BEIEH CREBHEITIESHSE. —MEEBETLTRABE
FHEAEFH—MFHTES. TER—TaskManager, 2MEE. ESLURBFXRENGIF.

JobGraph TaskManager1 TaskManager2
Slot 1.1 Slot 1.2 Slot 2.1 Slot 2.2
&) A
(D) [0
OO &l
0 A

EMIR—"NobGraph (NAEEFHIAFFTER, EEHE) .

af://n550
af://n568

o THSTMNEFHR.
o BEFANMICEEUER, SFEREIEL.

AME— 1 ExecutionGraph ({I2E)

BEFCIIERNFHITE N2, EEFHHITERNA.

HFRABFHETERL), NAEFELZSEANMTRNLEBESRNT.

BTER N Z AR MEIEER Taskmanager, FEHRE TIXMNEK,

JobManageri§jobGraph# fE8— ExecutionGraph, FiEESHELE NI FEiEE.
FTENIMNEFESEEINFHTES, XIS BoELEIME,
EERCIIENSEERNHTES, 2IWoEEE1.1502.1LUKRE.25802.2,
BEANAFREFHES PERIF—MEENL A EXEES T UER— MHER S Sith3TIREE,
MAEEIHEIRLE.

f§/\TaskManager—/MNVM, B4 SlotEVMABI—NERR, TaskManagerfEA—NVMFFEFLL
SLEEATITENES. SEPHNAEEEE, BENAER, EFETEStiSESHEIEE.
Fitt, —MTAREBRMESEILARIEE N TaskManager & iz TE S _ LEMFIEES.

3.1.4 SURMHEE

BN AREFEEIRITH24x7iE1T. B, BEMERIHERN, BAREELLET.
MEEMNKMHRE

1. BB SR EENERMAHRE
2. HOR, ENEMNBERHREERE.

RN EBRZ I EFHENRMAHE.

3.1.4.1 TaskManager#f&

TEZH5BETaskManagertfE iz an{aab 2

o RISHAINNBREFEIUSAFHITERSKMNIT, IPAN N TaskManager(8NTaskManagerfgf
FMERE) T LIS ERA I HITENE K.

o WRHA— N TaskManagerk4tifE, = EEEISEERDEIN.

o MEXMIERT, JobManagerigiE®ResourceManageriZ2{HEZ A IEIE,

o WMERIFRKM, JobManager=iRiE—ERNREBIRELMERMA. BRIEEMI (BEBZH
SRIEETEEERRTDD) .

3.1.4.2 JobManager{[&

EtTaskManagersc M EE B Hkdk 4V Z)obManagersc i,

* JobManageriZHliRRIBERRINIT, FRFEXENTRITENE, FIUlERCTARERINE
.

af://n610
af://n621
af://n634

* JNRTAERAYobManageri#tiZkI, RN FERFIS TR ML IR,
* XfEf§ obManagerpAFIinkPRIN FRIZFFRI— MR RKRHRAN (hHRMBXNMBMRE, B4
BIYRFERN) .

AT EBRXANEE, FlinksaHF—MEaBiER, Z&EaTLAERIR) obManagerse it 4 R F R E TR
R FARYTTEE iETBE) S — 1N obManager,

Flinka95al BBt&E EF ZooKeeper

e EEOHXER, KIBHSHHEFIEIRRSS.

* FlinkffEZooKeeperi#{T{liEE, HISEIEA— S8 BHEFFAREIEFIE.

o EuIAMER FIR(ERT, JobManager{5)obGraphfIETE % ERITTENE NN TR ARSILE)
EANCESAEERR.

o Iit4h, JobManageriE— MEMTFEIERIIET S A ZooKeeperfEiEFFiETF.

o ENFIEFHITERE, JobManageriEZEE MESHERAVRSORIEEMNS), LIeBESRRE,
JobManageri@#REEA\iZiElFiE, FiSiERLTEFRAENIETTS A ZooKeeper,

o [Alth, MJobManagerififErRIkSFTERIFTEEIEEFRTTIZFEP, MZooKeeperiFaign
FhE(IERYIES.

o [E3-3iBE T IXMIZIT.

TaskManager

TaskManager |

TaskManager

JobManager
Job

Metadata

Metadata

Pointer to I

ZJobManagerskhd, ZHETEITIEAIHFIobManagerfiTLA TS T

1. EMZooKeeperiE RKFE(IE, ARMNEIZEFEPIREYobGraph, JAREFIN BEF&EE—
CERAFERE.

2. B[[ResourceManagerig RO IBIE L LR TR FITERE.

3. R ENBRINBRER, FEEMBESIRSEE MEESPRIRSE.

REXE—NE, HTaskManagergi&JobManagersiy, HEEMECHINER?

o EARSEMREMNKubernetes) PEAESEIZITRERRT, KWAJobManageraTaskManagers
FEE RS RHRS B ENS.

e 7EYARNEgMesos LizfThY, FlinkBIERHATZIGAJobManagerg;TaskManageri#fZ2fIEHhS
ﬁ]o

3.2 FlinkFRRIEEIE

i TidiEsd, MAMESFRTibIIRERE. TaskManager RERISEIEM AR TS RXEIERIES.
TaskManagerfIMEBAMERZICRZAIERARPIREICR, HRiR, CRAR——TKEN, M
REEFIRIRPRE—H—iRE. XMRARERERMESRRMLINESE RIS,

B/ TaskManager&E—4 MLEE it EIAK/NA32 KB)BEFRIEFIRITEIE.

o WIRAEFESTHEKSESEARARMNTaskManageri#ig iz T, e lESMEES.

o fF¥JTaskManageriEiP— KA BITCPIEESR IR EE.

o (ERshuffleiEBEIURT, BNRESESEHTEERBERE MRS ESKIZEIE. TaskManager
FENFMEBESEH—IMEBENMEERR, IHISTNNAZASRIZE DX AIXEIE.

El3-4 R 7iXEM,

TaskManager 1 Taskianager 2

o fEshuffleiEEE T, RTIEKERIIFITERS, FUSMNRIEIRTEE4MMEE PR KEIZI
In(E5S RIEER

HTFEERNHTEBRRS, FASMEER D HFTEIMMEE PR IEZ RX I RENEE
F—4*TaskManagerfPiIEFX < AR—RMEEE

fEshufflef@zEEbroadcastiRz{ T, FENERRHKXIVEEFITERIEL R

FlinkgM & XAENAR ST TR/ NEEER BB,

SREF ISR ESER— 1 TaskManageriiz iz 7T

1. KX ESHBEHCRF IR A X T, FEEPXITHEEEBNATIS,
2. FWES MBAFIRSREVE X, FRHENRSCRE TRFFIL,

af://n681

3. Bltt, ER—TaskManager LiZ{TRUES ZARIEIRERA S SEMEES.

3.2.1 EF(GRENRE=ET

BT MEERRERFICRREN, FREMREANFFE. EHRERSFIANEEENHERIXE, T
AR ETRN, EHH—NRREENTEER, EAEREEE TR PSRN, MARIULZELIXA.

FlinksSEBl 7 — M ETERERRERNG, ETFRENT.

1. SIS AREESS BF—ENERE BRESFAERATREESE, RARRENERX
IR/

2. —BRZEHWEIERERN, MeEEREAFEERRIESHEREREE FoME CRE
EX) (EREWESERINNEETEE)

3. FWOS ERRBRVE PRELXRIEIE, FIKES KERIRERBERKITEERESET
—RRERESIZRSD.

ET(ERENIFL
o ETERNREHRLTER, FA—BRSERBNRREZE, KENHMALUKEETE.
o Lthh, EEIESHAIORIBRT, SR—ITEINSIMERREIE, RAEEREREAZGRY
FRERIA/INE T Y.

o FHitt, EFERITEHIEFinkSEERARERIEE—IA.

3.2.2 {F554%H%

Flinkf2fit 7 — TR A ESHHERIIAR, ERLIRMSERMS THiBEFE.

° AT HBESHHENER, HHENFIEEFL/AESHRNFHTE, FEIFEREBEH TE
.

o EB-SERRUBRMFEEHREXLER, CHEMRFER, CIEREENMESHITER2, 5K
WS RIEIRIE R

Parallelism 2 Parallelism 2 Parallelism 2

»{ Op1 | Funcl | —>{ Op2 ——>{ 0p3 —>

Local Forward Local Forward

EI3-6fiA T AR IS R N TEE

o ZNBEFREMHMETIBMES S, BB NIRRT,
o BE—MERNGIEER, — MR ERCRNEBIRIREAE T—REL
o [Ritt, ERMAZEAUEBICRER LIRBFIICTHERBEETHE.

af://n717
af://n739

Method Method
Thread Call Call

: ‘4

11-2-3].1| Func1 | Func2 | Func3

Funcl | Func2 | Funa3

101-2-3].2

:l—»

L

Thread Method Method
Call Gll

FlinkfEBUAER F2FEES#E, BRETIIBEEEXTX NI

3.3 SK{fAEate

IFAN E—TFmA, SHREEXSERTESH—HENGER, XRITSRNAINItER. TE,
ISR FlinkANEAITEAERSEINFN LIRS RIAREFK (I, LCOFEESHRIEE XATRMA.

3.3.1 K&k

FlinkS4-RIE)R A AR IZRIFRBICREBL ZHRIEEE. RIABUSICR SIS ERIRIARKEGER, BEE
ICRFFRFRNEMRENRER, b, ERSMET, REEELEFE VPSR,

SFIinkLASHREMRTMEESIRE R, ESRIBCRINSBHREBSRMA R TRIBNEFRE.

o flan, EEEMUHFMEFREEXNINEBFCROESEN.
* FlinkiSRIE RIS A8 T5ikAILonglE, FEENWEATEIEMIEZEICRA.
o REREBTIHERFEEXNETFEIMX A LongEMATLAREEHATE.

3.3.2 7K{s&k

IS AT iR E SRS EN e & MESS BRI EHETE).

o BT ERHERIXRATERAR A BRI BT B F X NRETT.
o flan, EFREEMONESSEKILGETENNFRIERMAITEFERHER

af://n761
af://n765
af://n778

fEFlinkeR, IKBIERHSCIN D —FHES [ARAISTRCR. WES-8ATR, IKLEEMICR—HEEER
P,

Watermark Record Record
[Imestamp

Figure 3-8. A stream with timestamped records and watermarks

KRBT BFHHE:

1. KM /R iR, LIRGRES B HRERNERHY, MARRERT.
2. IKNESIERABIERBEFERR. —PRIERATAKERR: AR CRARERERNIZA

TT.

BNBHERATAESERTEREFNICR, FIE3-8shEERERR2FISHICR.
o ETHENEFESTRSLETELFHNERNCR, 8MESHMER— B8 S HRITT,

FEII RSB EFTX MR,
o ISHURERIEIERK LR B RIREE T oRBiIRKAERCR, ZICRTERTTERRE

B&5e. XEFRICRIRIIBENCR.

IKNER—MENE, ElIRTFRBEREROFEEER,

3.3.3 IK (A EHEFNIS=4ad

FEATP, HIIETCEFTLEK L.

* FlinkiGKAESTMAEFES BIFIRLRISIHOR.

o (EEHEHIRT EIRS SLEF— At BIgE(Timer), ESHLMETHATEEIRS LixMitaIEE, PAEISRE
FEMHBESHITHE, XETHRREREIRIKEEEE.

o flan, BOREFASNENBELIEM— TR, JSHRIEBEEORVERTER, TRIE

BRREORPRE.

S—MESWEIKAIZERS, SREUTERE:

af://n806

1. (S RIEKAILRIRI RN, SERTE ISR (FRIEIAT .

2. (S ARG RIEEH R AR PSR TER LB AT RIROEIR. X TE N THRIHATRR, (550
ER— N EEERE, ZRHAILHTITEF A HICR.

3. (ESRIEEH SRR R N ES KK,

ERENESFHIT, BAVSGHEENB—MESMERK UL RER SN THES, URENSD LIS
REUKfIZ 2 [Ean a4 RSB A R, BARNANT

T ESABMENGEK YR FRKAL.

2. HEM—ASRIBIREIKRAIZER, SRHENNS KK EF/REETNSEERNSAE.

3. BElE, ESSKERESEHIRENM EHAFED KKER&/IVE.

4. NEREMRSERS R, ESAEFEMALRITEEE, SREBIREERNELSE RHEHE
MK, RFTE NHEST BErEEHaTE.

TEET—MEIMEAD K3 ML S KAMESEERZ FIK M FRIMITEFH BRI S BKKAEAE
AR TEIRT $hAY,

Updte
1 Partition WM 2, partition WM
w"m{ l et eci 1 et mechc
—opr] | ——f
— {4 —O—4
G B Task 5 B 3
—_— —6 s
L e DS v
3. 4

Don'tupdate event-time dock

i
=

e e = ———

Al

A T L L T e R e

FlinkAIZKAIEA SRR B ERE FES A HiERIARANCRIKGIE —ESXIF.

o XM, BERBMTXE—1EL, BIMERD KERhREEERIK L.

o —B—NDXRAEHBRIK L, HEBHRTETAMABRIEEAICRAMK I, E5054R
ERPEASHER, #HMSEITISRIaA.

o R, MR—MESREEMMAEBMESIRITEIFRIKALZ, BAESHILIBIERTAEK N
< REEM.

MTEERMANREKUEERRANE T, BSHIRMEER. BEARMNRIMESHSMA
[ER G ZHITFRIENR, BERROUBICRHPESERBLTE PR, BSEHRIE it
Eefl.

3.3.4 BYIE)EE /3 oA KL e E Rk
AR EREA KT A4,

EHEIRFIKAI&IB R RN RIS SRR SEHAIAEREA). Flink DataStream B AR LABIT =M,
SeRiZLIF

1. SRR S NABEAZI— M BT, SUERE FE-EH AN EEANCRR. Kk
HLEARRCRERANER R H. NREEFRENABARLKMIEZT, JLUEECEREAT
A, FlinkeEEEE8FITEKAEIEERL kBT REURRIRS XHBRTEIL.

2. [BHRTE 3 ECER(Periodic Assigner): 1XPMAssignera] LAMNE/MERFIRIN—MTEEL, HEHEH
HREUAK L. RENEIAIRT BB D ECLAENANCR, FrEiaaKEDEINAZR .

3. ERSHEE(Punctuated Assigner): BERILARTRIBSTAMNICTRRER KL

3.4 RSER

REZHHRNMARBRSH. FEEFRNZBFEHREMPRES. FTERARENSERAREEXNRT,
FlinkA94 TS =VER R —HFRT.

EARTHR, BAETE

1. FlinkSZF I ARRIZEBIRDIRE,
2 RS RIRAMATAREFNAE RS
3. RSN AEFINIETH TIRSB AT S,

B, BEESESPRRTIEERNSESETESORS. 3108575 SRS a0
RISE,

Kt &H]E

. Getstate| - |3. Update state

1. Receive input 4. Emitresult

Figure 3-10. A stateful stream processing task

af://n851
af://n864

o [ESEK—EIMNEGE.
o TERLIEEERY, ESTLUSERIEHRERE,
o FRIEEMASEIRSHERSER.

M, ERIRINSEEEEGM. XEELEIFEARRS(TEEEANT), FRREREHNER
FEJXMHTRE. FFESKRE—EM. #RE0ME. SHEEFIHEAERRIERERRFIink S, LIEF
BARBEBRE RN REFANEE L.

fEFlinkdh, RELES—MFENEFEXEL. ATILFinkgEITITANEEFAEMLRTS, BFREX
ERSHTEM. RIEERENAR, SMFRENRS: EFRSNRESRRE

3.4.1 8FKE

BANSHEBENEFHRMES. XEREHR—FHTESZARNCREILIGRR—RES. &EF
WS BEREMESSEE). T E

Flink A8 FIRSRA T =KIRE

af://n890

o FIFRNE: BRERTA—IRBIIE

o BREVIFRNRE: RAFERSERTA—IREYIER. B, EHISIESNRERSHNREFR,
ERRENNSERTIRIRSAE.

o IS EIABERERIEFHESMISKRSEHIERNERMZT

3.4.2 BEHPKIAE

BESXRSRIFET FRNCRREXRERLERFIEER0. FinkS MR —MASER, %R
SEFISRATF MBI RREICRIES L. SESLHE—NMCRE, CBPREDReERE
FMpncRAE. BEit, BEEEERES XREICRELEEINRE. B3-128R T ESNESHE
EDIRE3ZE,

State access scoped
"’To key of current record

>

Records are partitioned
by color key

BIES XRSE—MEEFRIIREHTES LHTHO KNS hURERS. BEDXRSRENT

o BERE: AERMEEHE—MESRENE. RETUR—MIEERINEIRS.
o FIFRRT: AEMRET VIR, FIRFETURESRE
o BREMAE: AENMEFMERERS. RGN ETIARESSEEL

af://n905

3.4.3 K& EiR

AT HHRRERPREGE), BNFHTESEERNELERERS. ETIRSHRPEFE. HafgEr, N
H— MRS BIRA AT SRR R/,

W& EIRAERGE:

1. FHRSER
2. BRSURE RIS NEEFiE

SHFAHKSEIR, FlinkiEFRMLI]

o E—MREER, HRSIEAFREIVMENZEIREEHINRIHITERE,

o BPREER, FIMCRESHISRFISENIMARocksDB, iXFf5z\2EFERAT.

o BAFFSLIRMHIFERIGDEE, (BEZEIREFETEARNIRRE. ERocksDBRLLEIE,
BE=ERK.

WEHRBERREE, EAFINKE—NDMRRSE, KNSR, TaskManageri#fZrI 87
RIERRM. FELE, CRFEOABIANRZRM. REERASBESHIASHEESIERIEENIIA
=i, ATHERNTEFETURS AN RRSEHIEERR. WS ERERSHEERNAR LS
AR g0, RocksDBRSEIMSGHEERER, XAUEERDIFERIPRNSHIGERTTH.

3.4.4 BIRSHEFRI S

REBR— N EATREREMA RGNS O MAREFRIHTE. BREET, BEHTEL
B, AARINIFTEECRSENDE, PEESZAMERFNHTES L.

3.4.4.1 FRBESERSHEF &S

HHRBED XNEHNEFILIBTBREF SRR TESII 5. B, ATRERSIE, Finkfs
AEABRIRE TR . 18R, FinkLSBRFABRREHSE, SMREEEES TS M.

Repartition Repartition
Key g\mup for scale out for scale in
N
O . Task 1 ED {
ma (@0 00
OO
OOH—*
Task 2 - Task 1
®O—
Ol®)
k2 [@O
Task 3 [E
@O [eYe]

af://n919
af://n940
af://n944

3.4.42 HFEEFIRRSHEF B

HEEFIIRINEHNEF T BaNSNFIRPHREHTENRSE. e ki, aHTES5)
KM R—IEETk, FABRY9EMSE. NRYRINHED TEFIHHITE, —2ESKUS
WSFHR. BE3-14875 7 R IRINSRIER T D EC.

Redistribute Redistribute

Operator list state forscle out for scale in

3.443 HREBFHRANRTHEFT TS

HHEEFRENSHNEF ST BERICRESIIRPHLIBRE MEILIESH. K5, ES5ECK
I ERERPL I EFWPLIN, E3-15877.

Broadcast Broadcast
union for union for
scale out scalein

Operator union list state

af://n949
af://n955

3.4.4.4 FREF BINSHEF S

HEEF BRNSHNEFET BENSBKSENZIEHES £, XEMERAIBNSERRTE
ESEEERNRE. EREFNERT, BEEEBEESRAVESEIE. MNES-16E7T.

Copy for Copy f_or
Operator scale out scale in
broadcast state
Task1 [Task2 [] '

Task2 [l Task3 ['

Figure 3-16. Scaling an operaror with operator broadoast state our and in

3.5 ER. RE=. KEIRE

Flink@— MO hNEIRGNIER S, BAESERMMEFEIIIRE, Finkb /B RXMRSFIEEER,
FEERESPERRF—EL

FEARTH, HIIBNAFInkiEESSERENE, F—TeM2NIRESHERAPRS—EMR
f=. LEHh, FAIRHE T FlinkIFHIRF R (savepoint)IhEE, BHG—BIRLIET], MR TIEITRIUL
I REPRIE S MERE.

3.5.1 —¥HEE R

Ebﬁ SN e A — B E R E A ISR FENRIRE LA £ BESKSHTH—ME
o HMATLABE—MIMEREERGN AR —EM I E R EH TR, IREENERN:

1. EERFTERNR.

2. FFMERARFEIEERELE, FFEESERNIETHEMmASEE.

3. BATEESHIRESEREITESAFE, ERSER. SMEESENEME, RERMTK T
4. IREIZUERBIN .

TERT T — M —HMaERIGT, XMEREIEGE, AEX e rnEEs 51K

af://n961
af://n966
af://n972

Input stream Input offset Sum

Checkpoint O3S

JobManager
Storage
3.5.2 N\—HiHEE RS
RN ARITERE, FlinkEEAM AR ARFEMGER. —BRESEE, Flink&ERRHRISERISM

ARESKREIE —HENLSHERRA. E3-188R 7 RETRE.

af://n987

Failure: Task sum_odd fails

Source [7 f—{sum_even| 12 }—>

sum_od 9

Recovery 1: Restart application

Source sum_even L —
sum_ odd L l—b

Recovery 2: Reset application state from Checkpoint

Source | 5 suUMm_even l 6 l—b

£

=

&
\l

Sum_even[12b—»
Sum_odd | 16—
MBEFRED H=1"28
1. ERE NN BRERF.
2. B8 %?Eﬁﬂﬂa,‘%ﬁﬁ’%ﬁﬁﬁo

3. IRSFRR1ESSRILLIE,

RZEETFHBEEIIIRESENCERFINPRE, HEMEBMAREEIENEESIINERE
BP—%l, FPAXMISESFIRSNHIRT LU AN IR EHER—RII—HIERE. SAREEULE
B, BNATENERSIUNFTESIINERFZREIRMEXRED. 510, HApache KafkaiXtFa9=E4H
ST LN Z BTV MR IZBICR. R, tIREMsocketiBEMRUTEZES, E9socket—BiBHE
Tiﬁﬂliﬁﬁﬁ%%ﬁiﬁa

HAWEEE, FlinkAgteERMRENHREEERNBRERIVIAE. RIEN BT RANESIELCE T,
rEHE, FESRICRUBHSAREITERR, NSHATE. MHRFEEERE. YTEE
FHERSE, FlinkiRAAVEEECRTLAMRIE 7 H5H—XiEH.

3.5.3 FlinkiEBE=Hix

Flink&FChandy-Lamportl D NRBE LRI ER. REEZAASEEEINNAER, E5D
ESFHAMCRERIIED, BESTTLAGREEIT,

FlinkAiEEREEER—IRAEERDRITANSHAEENICR, EEKMNEXN. MERDRAET
—MEERIDRIFREBINER, DRFNEE LBROE AR ES. HEERZERNcR 5l
HIFFBIRSIEEE SED RTINS ERY, MAREZEIICRS EMRBIERESABEESTR
FRXIMATEERT.

TEBAEE—NERRNFRERX AL

HAMER— M ERRRNBEFROIEREHERIZE L. NAEFER N UERESER, S EERE
FHEE— M MRS R. SERESISIMEHTHS XIEHS X, S oREH—MESL
B, ZASHEMEREEINEFNEM, FRENRNEMAEE NIRRT, ZNAERFIE3-19
A7,

Input stream State: stream offset Even numbers State: sum

! ! b/
—o-o—b Source 1 Sum even | 2

Odd numbers

JobManager@BIREMHERES RE— M HNVFERERRSHEREBINERERTRRE, WE
3-20Ff73.

af://n1005

Initiate
JobManager | checkpoint 2

ed

h 4

oo> Source 1] 3 | —@)—»[Sumeven] 2 Sink 1
1
e

h 4

OO 2[4 f—>[sumodd [s}—~O)—{_sink2

SRR IS REHEE RERR,

1. EEELEGEER, ANRRSRHER ERFIRSHEER, HRETITEFE

2. BB R PR BERE THES.

3. RS RimaERERFRFTF 2 GiE MTaskManager, TaskManager&£g)obManager&ZiXifiAil
2.

4. ERHTORMFZE, SERSRSESNITFRE.

5. (0T~ ERTR

Checkpointed
source state
Acknowledge completion

of task checkpoint 2 JobManager

Remote —»

l X
storage L_T___[T_::---A-A i

—°»°—i—> Source 1 3 —A—b Sum even | 4 * Sink 1 i
Sink2_]

I I

'R I
1 |
I 1

~ QO e[LA\ [Smosd [1}—Q—{ iz
T

Emitted barrier
for checkpoint 2

HERARHINERDIRAHN BATHES. STHISIREEIFRMMSERP IR/, BHREFFER
BEfEHM LIS RARIRCER. TFFHHE, BHRECEBIL RSB LS
ICR, MR T PRFN LHFISCRERER, SHHENE. SEMBERERENARITER
JHEERNTF, WE3-22f7.

Source continues Buffered

processingafter record for L"PUE whose l?ar{riier
checkpoint barrier alignment as not yet arrive
are processed

Checkpoint barrier

arrived at task
—B—MESNENRB LHESKEISRRT, cHaltRSERERE—MEER, HEEERDRT
IBECRFE TFES, WE3-2307R.
Checkpointed eck
task state eckpoint state .
when all input barriers Barrier forwarded
have arrived when all input barriers

have arrived

ERINERSRNRE, ISHTRLEBEEMYCR. ERETMEEMCRZE, IS RENER
BN, E3-2487R 7 RIRIN FRFEFF.

Process buffered
record after barrier

wasemitted

Ba, MERDRAEIAEIEL. SR CRREID SR, SFOETXIERE, REBESREEAN
WER, FEjobManagerfiARIEIZo IR, —ENBIFBESHLE THREREA,
JobManagerB SIS RAREFAMEERICRACTM. E3-2587 riEREAIRE—. WRIFT
&, EFclivRERABTASRERRENF.

(heckpoint 2 completed

s Acknowledge
- checkpoint 2
8

3
8

3.5.4 {2 B R TERERYRZ IR

FinkiREREENRRAFF=E L HINER, MAEFLBEINA. B2, SRIEINNAER
QLEEGEIR, FlinkSCIR 7 —L0i828, AILAERLAM TRARERERIN.

ESERERSENECERINTRET, BHEEE, —MFREERSBRERBASR, RIS
PITERIRENILE, BS—PHEREBRERERTRTEE.

af://n1048

b, RIS PRI TSR R A EF L EE RIS RS XANER, MEERELE, 8
e —EMHRIEMNSIH—REEREIZE D —R

3.5.5 (R 1F=

FlinkEBIMEMBIRENIREZ ——RFR. R L, RERNEREESHNEREREEHF, Bt
ALBGREREERTE —LEUIMNTEIRINER, Fink A SBiERFRTR, MERERFREXE
FSRERIREFR.

3.5.5.1 (RIF=R9EA

SLE— BB REHERER, HITLUNZEERBIRA. XEENBIIRSIIBHARTR
APRZS, FMIRERRF REIEIETAA.

RERAILIAERSZER

o JLUNRFRESN— I FRERSHNNERER. XEWETLUEE—EihbugZ EINRTFRER
ALAMERRRHITESRNA

ALERRIRYEREE E SR

ALAERREREENAEFATHBRIREE. XEMALUAEMESI RN BB L ERFRIR
BJLARRIF K TR IHEHRIE

3.5.5.2 NMRTFREENRA

EARTHR, HAIEERFinkIENRE R BRI AR AR IR,

—MHEBEPNAEFRESS MRS, el hEAREFRIREES L.

TEERT— BESAHFOREER, SMIFRETRMES. Eh— HFOP-E— 8T
RA(0S-1), B—MEFOP-2/EFE MRES RRAKS-1HIKS-2), HERURFAR, FIEEIRAHE
LI —MSANAFIENIE .

af://n1056
af://n1060
af://n1077

Keyed state

Taking 3
savepoint

_ [momm)|:
52 OO00) |

e
Restoring
foma !
savepoint : 0P-1 l&l DD I
I
YOS I_ ___________ :
State name
Operator ID

Operator task Operator state

FERPIRSEIFARBEFRRAFIRESERETER. ZEF RIS REEBBRTR
APRSEGRIRGIZIN RGPS L. SMNREREMNEIEFR, FlinkGRFSEIREH D K4A1HE
REFANES.

RNARETIEN, RABEEFRAFRSENLTIRSEIFTEEBAEIER. FABIT,
Finkea ElE—RIEFRRAT. BR, EFinRNEETHEIEEFAWRRAFERRT. X, Rt
FNEFIRRAFFRETEN, BATEFNEFESTN. B, HIBENENHRMENFNSTE—R
IR, MAEERFFlinkBIBARIE,

45 IBFlinkFRFIS

FlinkG—MESFFARHMERIHITIER . MEFM execute O SiEWIEMAR, SER—MNVMELUEZ
ZA2RHEE—1N obManager&f2fl— NTaskManager£f2, XHF, BEANFlinkRASLAS&ERS
RER—NVMEEFHIT. ZE T BFEIDERRITFlinkBIF.

BT RIVMPITIRIAIEE, (RETLMGR AR R —HEI DESRYEIFlink A,

Z855 DataStreamAPI

RENEB TFlinkAYDataStream APIRIEREENR. FAVEE~EBIFlinkiRRBERIISEFIAEME, 1T
IBFIinkAURBERFIOSHFAIEIESEE, HNAERIEIR(data transformation)f193 Xk (partitioning
transformation), ERX—E, {FEMNEIASSI— M EEEFIEERIRAIERBIER.

af://n1090
af://n1097

5.1 Hello,Flink!

BRE—MERIGIF TR

/¥% E N —/~case classlElfE B3 BRI R A >/
/** Case class to hold the SensorReading data. */
case class SensorReading(id: String, timestamp: Long, temperature: Double)

/%% E R object*/
/** Object that defines the DataStream program in the main() method */
object AverageSensorReadings {

/** main() defines and executes the DataStream program */
def main(args: Array[string]) {

[/ BERAPATIIEL
// set up the streaming execution environment
val env = StreamExecutionEnvironment.getExecutionEnvironment

// TE R A A S (]
// use event time for the application
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

// BRI
// configure watermark interval
env.getConfig.setAutowatermarkInterval (1000L)

// MR il #Datastream[SensorReading] 5 %
// ingest sensor stream
val sensorbData: DataStream[SensorReading] = env
// IfEELESource
// SensorSource generates random temperature readings
.addsource(new SensorSource)
// B RAIK L
// assign timestamps and watermarks which are required for event time
.assignTimestampsAndwatermarks(new SensorTimeAssigner)

val avgTemp: DataStream[SensorReading] = sensorData
/7 KIR AR PRI P T iy 4 R
// convert Fahrenheit to Celsius using an inlined map function
.map(r =>
SensorReading(r.id, r.timestamp, (r.temperature - 32) * (5.0 / 9.0)))
// WRHEAL RS AR H B
// organize stream by sensorId
.keyBy(_.id)
// FERAR IR E 1 44
// group readings in 1 second windows
.timewindow(Time.seconds(1))
// G P B E CRECRTHE T S5R E
// compute average temperature using a user-defined function
.apply(new TemperatureAverager)

// FTENEIE=H &
// print result stream to standard out

af://n1101

avgTemp.print()

// FRUEHAT A
// execute application
env.execute("Compute average sensor temperature')

E— A EERFlinkiR R R LA T LS

1. REBHTIME

2. NEUEIRISEE— K25

3. B — R IR SL I R B S

4. EEMHIEEREHE — N SN R+
5. WTRER

5.1.1 88N TIHIE

Fink IR EMAIE—HSRIRECHNGTINE. ITMERHEEFEESINRE LETAEESE
¥ Li51T. 1EDataStream APIR, N EERERFEIHITINER streamExecutionEnvi ronment 3.

BRMIRERTIMERIS T

1. JAFBEH getexecutionEnvironment O FAKIEERTIFR. WA ARBIAMEIREAE, B
ARFRARZAGENETY, NREEEETEERMNEREFiIRERZAE, NREIZERT
INE, BN, BIREI—AHERE,

2. BATLUEIY createxxx FiEREBiIREHITIAE, BEARIBIOT

// BB AR PAT ISR

val TocalEnv = StreamExecutionEnvironment.createLocalEnvironment()

// B TR R R PATIAEE

val remoteEnv = StreamExecutionEnvironment.createRemoteEnvironment
"host", // JobManagerf] T84
1234, // JobManager(#ji 15
"path/to/jarFile.jar" // FEfL%iF|IobManagerff]JARE

PITIIRIARM T RSEERIR, than

1. 18)J env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) IEEXMFINBE
FISE{4adEIE

2. 1 ZEHITE

3. BihBESE

af://n1121

5.1.2 iEBUSANITR

Ik

StreameExecutionEnvironment 2t 7T —RFICIERIVEWERAVGZ, FREEIEREREINE.
LR RAIRRT L RHEAIISE X, BT LAThESER.

fEsLhleh, SEBYCEBAT

// MR BRI+ Al dpatastream[SensorReading] X %
// ingest sensor stream
val sensorbData: DataStream[SensorReading] = env
// WL EESource
// SensorSource generates random temperature readings
.addsource(new SensorSource)
// BB A KA 2R
// assign timestamps and watermarks which are required for event time
.assignTimestampsAndwatermarks(new SensorTimeAssigner)

5.1.3 R FAE5IE(Apply Transformation)

LIRENEI T patastream , FEATLARTERIFAEH%(we can apply a transformation on it), HHEA92EEY
BR%:

1. BT LA BEAY Datastream , FrEAIBERARZEEAY(eg. Datastream[Int] =>
DataStream[String])

2. BURRAEY patastream FHIRE, MEEISXSEYEHITERAR.

3. MAERFRNZIE 2 EIT — R ERHRE) AT,

fEschich, RSN

val avgTemp: DataStream[SensorReading] = sensorData
/7 U FE N PR B e 0 4% IR
// convert Fahrenheit to Celsius using an inlined map function
.map(r =>
SensorReading(r.id, r.timestamp, (r.temperature - 32) * (5.0 / 9.0)))
// WYL B dR o 4 e
// organize stream by sensoriId
.keyBy(_.1id)
// IR HVRSN & F o 4H
// group readings in 1 second windows
.timewindow(Time.seconds(1))
// AEF AP B E R ECRTHE PS50
// compute average temperature using a user-defined function
.apply(new TemperatureAverager)

af://n1141
af://n1148

5.1.4 HHER

RN AR EEEHER LR —LIMRRE S (external system), #llApache Kafka, MEFRFEEIE
FE. Flinki2t T —HRRERC, YTETEBHEREAFRRNRS. BoILSLHB R EUEL. £8
—L FEREFRARNER, MEEIFIinkiaIEIEIRZ(queryable state)IBEERIEMRTELER.

EFRAI9RBIF, &% patastream[sensorreading] FHIERIEAEREE. B MCRE SERESES
PRNSRE. BIERprint)BERRE N MER

avgTemp.print()

5.1.5 1T

BN AENTRE, TTLUBEIER streamExecutionEnvironment. execute () EHITE:

env.execute('"Compute average sensor temperature")

FlinkfEFrER 2@ iR HE (lazily execute) Ry THIIT.

o thEiRiR, ABLEIEERIRAIFIRIRIERAP ARSI B R (A SERAI SRR,

o AR, XLAPIERRRENITIMETOIZ—MATIHE. ZitRIEEN NS eEaR AR
RMNATIXEEHRRS LRI—FRFIER,

o REMAMA executeO B, RAZMRIZFAINIT.

ST S e 9)obGraphFHig3sig)obManagerififT.

o RIENITIRIBRIEE, RETREEEIS obGraph KX BWEAFILIZE IR obManager, &%
JobGraph&ixZ!izfE/obManager,

* Y5 JobManageriZf@iz1T, FRTJobGraphZzih, HATEBERME NS NAEFRIEZEMRT
T HKHTAY) ARSI

5.2 BEHRIS(E

EATH, EiSHARADataStream APIFREIEAEELR,

o RAFRLU—NHZSNEUERIEABN, FEEIEIEA— N HZMNEHR.
o HE—/ DataStream APIREFAR LAILIFE 8 BIESAEEEREEE— WM AZIE
FyDataflow[E.

REHRVERET AP BEX Rk N, RERGHRTAPEE, 5E 7 NEmNRRY
TCRIEIRIEHIRATTR. BB MR ORKEX, BN T EAI MapFunction

af://n1162
af://n1169
af://n1189

class MyMapFunction extends MapFunction[Int, Int] {
override def map(value: Int): Int = value + 1

3

DataStream APIAHPLL B H I AUEHE SR FERIRL 7 XN AYAR SR, FfiJiEDataStreamAPIfYEEHR
b2 ES

1. (ERTERANSHIESER

2. (X ItEFR(ESFhIKeyedStream4EiR

3. BEFBEREHNI—FIRE—FEERIF D RS FRAER
4. 3RS H TEMRBRN S KR

5.2.1 A4

ERCIRPHLES ISR, XERESMILICRABEHPMINCRENRD. BUAEAREREE
B BRERSR. CRFDETIRS.

5.2.1.1 Map

BT A patastream.map () J3iAAJ LS Emap k= E— il patastream . BREEMINFH
{EIBA AP BE X HET 28 (user-defined mapper), BREIERREI—MEHEM, X NMEHEHTREER
[E258RT(eg, DataStream[Int] => DataStream([Stringl), El5-1 2R TEEMNERFEEAERNIMap

...:..Q>OOO.OO>

Figure 5-1. A map operation that transforms every square into a circle of the same color

MapFunctionfJF MBS DRI R RMASARIREMBMHEMARISRE, vapFunction BImapO 73
RS MNANS SRR — MRS

// T FATGEMAEDE

// O: HithmERrRAY

MapFunction[T,0]
> map(T): O

TEE—MERGF

af://n1213
af://n1217

val sensorIds: DataStream[String] = reading.map(new MyMapFunction)

class MyMapFunction extends MapFunction[SensorReading, String] {
override def map(r: SensorReading): String = r.id

}
AT LA LambdaZRiAziH—5 81t

val sensorIds: DataStream[String] = reading.map(r => r.id)

5.2.1.2 Filter

fliterf&IEIT—MNRENEA Boolean XBIMREKREFRHIZES:

o WMRIRENEAtrue, APACSREBMASHHEBHEREEE,

o BNESIBEHER.

o EiJFFIDatastream.filter()/5i AR LUEREIL USRS R, FEMSHIADataStreamtBREIFEEAV
HDataStream,

o ES- 28T — 1 RIRERETHRINTISIEIE.

mioRd(f /——

FilterFunction RBISHZEHWANRRIXRE, SHY filter O TEER—MENSHHRE—MERE:

FilterFunction[T]
> filter(T): Boolean

TEEANERNGF

var filteredsensors = readings.filter(r => r.temperature >= 25)

5.2.1.3 FlatMap

flatMapftifSmapseil, (EREALNEMINBHERBY. — 0S4 WS,
El5- 38R T — M EFEAFHIEER S HM i atMapi(F.

af://n1229
af://n1250

o MERMARBHELR, WAIMHMEZEL.
o BREHREH,
o BIRBITREFE,

Figure 5-3. A flatMap operation that outputs white squares, duplicates black squares, and
drops gray squares

flatMapEREENINT, BILABIR M collector RIEEEURAISTCRIREIFAN. — S NEHHEN
7R
// Ti FIATGRIIIA
// 0: o R ML
FlatMapFunction[T, O]
// REMEAUNTt, HELRARE
// collector[O]1E Nt &%
> flatMap(T, Collector[0]): Unit

flatMapREUE R LAUI T E X

FlatMapFunction[T, O]
> flatMap(T): TraversableOnce[0]

TEE—MERGF

val words = sensorbData.flatMap(r => r.id.split(" "))

5.2.2 HFKeyedStreamfliEifi

KeyedStreamflSRAJLANZE LASFAHRIRRE D T2 S MR ISEHFiRT.

KeyedStreamAJ LIRIERR4HFAIPAT, FrE EEHERENSHTLULREREPAE.

ETRENBkeyBy Bk, ErILUEE— patastream & 9— Keyedstream ., RGNBRNES
flReduce, EBfIJATLAMERTE keyedstream t

af://n1272

5.2.2.1 keyBy

keyBy#ti@Eid fERIgDatastreamiifkgKeyedStream, HIERFHNEHSRIBERAREH S EE
ARERYS X(partition), EEHERRMFIEEMHEH FHFEFIR—MESLIE.

BAVRRIAMAS MR, BS-4BReNRE— oKX, BBERMSEHIRES—1D
X,

Figure 5-4. A keyBy operation that partitions events based on color

keyByRILARZfMA R RIRBUMAI S, W=

a dot afterwards

TEZE— " keyByHIfIF

val readings: DataStream[SensorReading] = ...
val keyed: KeyedStream[SensorReading, String] = readings.keyBy(r => r.id)

af://n1280

5.2.2.2 RIS

RIS MAFKeyedStream &, BER—MEEREER (K. H/IMEFIRKE) B
DataStream,

o RNREGEFRABMERT—ESE.

o WFBMIANSEH, EFEMRENNRSGE, HEEHENEEMRESEHRIELTIT.

o RNREGEMFREERN— ATIEERSBIRFERNSY, ZSEEEP NFER OITERES.

DataStream APHEMH T LANRIR G5 iE:

B ik

sum() RN EMNREEETR LAY

max) RetERMAREEETR LNRXE

minQ Rt EBANREEEFR Li&RIME

minBy O ReMtEMARTESAIERIME, REZERESM
maxBy () RetEMARTENAILEKE, REZERESG

IR REERSNRUMRETEZESER, SRAEITE—1.

BlF: 33— Tuple3[int, Int, Int] KBREEES—PFREZMBRESE, ARRMNMIESEZ
NFERHIFN

val inputStream: DataStream[(Int, Int, Int)] = env.fromElements(

a, 2, 2),
@, 3,),
@, 2, 4,
1, 5, 3))

val resultStream: DataStream[(Int, Int, Int)] = inputStream
.keyBy (0)
.sum(1)

"""output

a, 2, 2)

@, 3, D

2,5, D

a, 7, 2)

FATERSA, HoATRRETEZRENM, FEATBRARX

af://n1293

5.2.2.3 Reduce

reducet& i 2iRENR EA—RR4(generalization),

e BfEKeyedStream R T —ReduceFunction, ZEHIEEMNENBHSLYETMIreduceLRiH
T—RABE, HEH— DataStream,
e reducefR&pIEDataStreamfR!, HHRAIEE SHMNRAIZEUER.

ReduceFunctioniZOENIT

// T: JLEmFEH
ReduceFunction[T]
> reduce(T, T): T

TEZE—reduced&HAGIF. ETEAIGIFF, BEARSLNESEUFIREHRHITOX, REER
BB NMES T E— T EFRSRIEIZR:

val inputStream: DataStream[(String, List[String])] = env.fromElements(
("en", List("tea")),
"fr", List("vin")),
("en", List("cake™)))

val resultStream: DataStream[(String, List[String])] = inputstream
.keyBy (0)
.reduce((x, y) => (x._1, x._2 :::y._2))

output

("en", List("tea™))

"fr", List("vin™))

("en", List("tea", "cake™))

5.2.3 ZiftiEik

TFENAFTERZS MBARBGERGE, FE—ENATES—FRDEINESEFFRUANAREE
1B, TE, FAIEHEBLERLES MANREEZ MatIRAIDataStream APIEEIR,

5.2.3.1 Union

Datastream.union() 75 AR LAGHA S Z MERSEIN patastream , FAR—METHIZEEUERAY

DataStream,

El5-58 7 — M unioni#fF, BRREMRKESHSHEIRMaHRF.

af://n1330
af://n1345
af://n1349

Figure 5-5. A union operation that merges two input streams into one

unionBfTIIEEF, RERFZRISEHLFIFONBRNEH, HIRFFXZEFRIE(The operator does not
produce a specific order of events.), Itt5F, unionBEFARIIEUIBHITEE, B MNENSHEMK
RIXEITHE,

TEEME=FHEREGHA—F0F

val parisStream: DataStream[SensorReading]
val tokyoStream: DataStream[SensorReading]
val rioStream: DataStream[SensorReading] = ...

val allCities: DataStream[SensorReading] = parisStream,union(tokyoStream,
rioStream)

5.2.3.2 Connect, coMap, coFlatMap

ERIXF—MUA, CSEMRMKE, FEREXRNINERESAHER. NANEREERSFIER
feRkas LIZEE. LiREETAENRE HE WS KERE/T, NARFRKHNRER, XA, B
THEREZBERM, BIIFEESHARRRIRIERR RN SSRGS IR

LA, SHRNRIISGHRRGEPIFEERINTER. TEREEEXAIAP

DataStream.connect () 35— DataStream#FREI—1ConnectedStreams¥J&, 1ZWEREz R
NS E—EAR:

val first: DataStream[Int] =
val second: DataStream[String] =

val connected: ConnectedStreams[Int, String] = first.connect(second)

af://n1361

ConnectedStreamsXISIZ M T map(fiflatMap(), E{RFEERS

HIABR T, connect(ALERNRNSEMZE BIUXR, EHFmNRHSHEENS EEE FES.
XFTASFERRENER, BEEFTHEEIN. ATEConnectedStreams LF=AREMER,
BJLi& connect()5keyBy()skbroadcast()4ES{ER.

o S keyBy O B, connect O ISR FLIERTEEHRRNSEHLZZIR—IMEFIS
£

* M={EMA broadcastO BY, MERMPE—FW &, ENEHRO KRG TFEFRREES L.
XA LARIEBR S AMEX P M NAHITTER .

5.2.3.1 SplitfiSelect

splitRunionfIiZE(E. SIRBEAR SEINSHNFERRENE S MELRE. SMIASHEHTLL
WRIXEBD. —AMHSAN BN, AL, split& BRI RTEiEsaEsE .

E5-62m T splita ¥, ERMEHRSHSEMEMSTT, REFRREIER.

[

uE
I..

Figure 5-6. A split operation that splits the input stream into a stream of white events and a
stream of others

H| |Hin] |N

split)7FELA—OutputSelectoriREiE 1 EASEL.

// IN: [FIDataStreamfIcEKA!
outputSelector[IN]
> select(IN): Iterable[String]

BMHRNSHRIRATEISTER outputselector.select) 757k, FHBERMRE—
java.lang.Iterable[string] ., IREIHIXA string FIFRFEIE string RXNEHFTEIEHIR
9B,

af://n1379

splitQ FAERE— splitstream &R, XPMRIFIRME— selectO Fi%, BIIIEEHEBFRM
SplitStream RIEIE—EEH S K.

SEHIS-2: B—PMEFRDE— N AEFRA— M INFR

val
val

val
val
val

inputStream: DataStream[(Int, String)] = ...
splitted: sSplitStream[(Int, String)] = inputStream
.split(t => if (t._1 > 1000) seq("Targe") else Seq("small"))

large: DataStream[(Int, String)] splitted.select("Targe")
small: DataStream[(Int, String)] = splitted.select("small™)
all: pataStream[(Int, String)] = splitted.select("Targe", "small")

5.2.4 3 REER

SfsiADataStream APV BRERFRS, RASARIERIEE IR ERFTE KB oS R IR S KRS
FISEIERE R ZIERINER. BRENTEFEREEFNERSEERR. 480 , HIIBNA
DataStreamep 3Tl X REREL B RE X 23 X RBRAYTT %,

THEZ

BRI KRS

af://n1397

&

Uiz

i (Round-
Robin)

EiffJ(Rescale)

I8
(Broadcast)

£Ri(global)

BHEX

BENSREIFIT

ik

BRI KRR FDataStream. shuffle() 75 ASE, 1%/ iAG S HHEH D ECE
TEEFRFTESP.

BRI EERMANRNSEMG RS IS DEA RIS,

rescale(tERLUCHRATSNEMHITH R, EEENLFESRS B89 TiF
ESEAEEE. S DRESEENT ISR, XMTAREFR, T
B T i ERNX 5]

{a) Round - robin (rebalance)

broadcastOISBNRTPRIFHES, FREEREE TNFEFHIREHTE

5.

global)TN EURRRIFTAE S A XS TR NS — M HHTES. ©
MINOMERXFDXRE, RABRESEHEAE—ES TR NRBER

fiae

SNRFTETE LD KERISEBAGIE, (RAJLAFIApartitionCustom()73i%&%E
TE X 5 X R

val numbers: DataStream[(Int)] = ...

numbers.partitionCustom(myPartitioner, 0)

object myPartitioner extends Partitioner[Int]{
val r = scala.util.Random

override def partition(key: Int, numPartitions: Int): Int = {
if (key < 0) 0 else r.nextInt(numPartitions)

}

5.3 RBEHITE

BFHFHTETUERTIRRERSEFRAIETES. BOABRT, MANREEFIHFHTERIRE
FNFERTIRRRIFTE. MHTIRRRFTEISIRIEN REMBIFRLHY E T Bk,

o MRNAREFEMMITIRRTET, WSHTERENSCPUREZHEIRS.
o EFETAIFIINKEBHRSZN FIEFRS, BRERFPEREE, BNMEFHTERIREEEENA
HiTE

RFEEFHITERE NEAMEHITESHNENTAZRENEE, N RISBAEHTER x, 7Ld
REBEFHITEAyY = x/2, HEAISITH x=8, y=4. MEEEHEITHT x=32,y=16 , XHEHIEITIA
B, BEFHTEDILBEZ L.

TEAIFER 7 IMERBAMEF T ELARINIIR EIMEFH1TE

// REGREIAT
val env = StreamExecutionEnvironment.getExecutionEnvironment
val defaultParallelism = env.getParallelism

[/ VEEIREIIATE
env.setParallelism(32)

TERMIFER T IMMRERFIAHTE

[/ RBOREIAT R
val env = StreamExecutionEnvironment.getExecutionEnvironment
val defaultParallelism = env.getParallelism

val result = env.addSource(new CustomSource)
// BEmapiHATEEABRIN AT S
.map(new MyMapper).setParallelism(defalutParallelism * 2)
// printEBEIC AT R E N2
.print() .setParallelism(2)

Flink DataStream N FBFTA MBI B IASIEN R AEE. XEMENRTEEBRFIIIIRE
Sk, LUBIMEAEEN], BRENBENASRER. RERIIRER, SMASFIRIE. Flink{ER
KBUSR(type information) AL SERREIRERE, FASMEIEEE BMERITENFTINER. RF
SUEEETILL RS,

—RRER T, Flink&BaLABaHREEIEISRIIREBISR, (BSBHENRRRMAT, HNFEFIEE

KBS,

af://n1428
af://n1445

RTFAISTTICFInKSTFRIZEEY, INEIEEABIERAER, LIRSFInkTT A B s R EAYRE
RARBTINMALIRRRI S RS BISRBL R E.

5.4.1 SISHOEIRRE

Flinksz#avafiScala el FRROFTE B INEESREY, LIS LA

o [RiREEY

JavafScalasgéd

Scalat¥flZ(case class)

POJO

—UOHERRSERY . BU4H. PR, BREY. MEF

XITPOJORIMERE . MIR—NEHEBINTHEM, BESWFlink&{EPOJO

. B—NEH

o« BAABHTEHIAEE

o FEFREEABIRERET AN getter LU setter J5ik
o FEFRAEBRRFINKTISHI

SHTTREBINMRRE . FlinkSTHFSMIFRREEL, tban

o JRIAEEXISRIEBINTENAH;

e JavafYArrayList, HashMapFIEnumzsEY

e HadoopRJWritableZ&HY,

e ScalaffJEither, OptionFOTryZBILA R Flink ERsCIRAY)avahRAAIEither2EY

5.4.2 JEIERBIEIERBUER

FEFlinkBRELR G, #ZILSER TypeInformation , BARREMFIMLERTILLEREREM TR ERIE
B, HRERHITRY, FlinkfRBE RSN AEZGENEG MNMGERE B Rk
TypeInformation, FlE, KZBHERT, KIJEPISBUEFMSEREES, EHEIHENRKARAT,
MR IS EEUERBF AR TypelnformationT ,

TEZELNER TypelnformationfyfIlF

// JRUE2EA K TypeInformation

val stringType: TypeInformation[String] = Types.STRING

// ScalacliiTypeInformation

val tupleType: TypeInformation[(Int, Long)] = Types.TUPLE[(Int, Long)]
// case classiTypeInformation

val caseClassType: TypeInformation[Person] = Types.CASE_CLASS[Person]

af://n1453
af://n1490

5.4.3 EXRHRBIER

TR TypelnformationfIA NG, SE—EEI3EM ResultTypeQueryable EOKY EBHR
#. WTEHIFFR

class Tuple2ToPersonMapper extends MapFunction[(String, Int), Person] with
ResultTypeQueryable[Person] {
override def map(v: (String, Int)): Person = Person(v._1l, v._2)
//PlResultTypeQueryable
override def getProducedType: TypeInformation[Person] =

Types.CASE_CLASS[Person]
3

ETHh, TEE N DataflowRd{$EFjava DataStream APIAY returns O AixREBRIEEEEFRNREZE
i

persons = inputStream
.map(t => new Person(t._1, t._2))
.returns(Types.CASE_CLASS[Person])

5.5 EEX EFN5 | H=FER

FEFlinkhER S EE(HAEEES| (key specification)FN1RERBIM(field reference)fditt75, FlinkSRFAEZH
SHNRFRARENE: B TNERUSREN. BUETEAFBENFERFRANKREN. BT
KeySelectorEREEEENX

5.5.1 FRR{UE

NREFELRBRETA, NWRFERINTHTENFERAEN T LE .

PN T EX M FERTTEN B AN FERIF BN RIEE

val input: DataStream[(Int, String, Long)] = ...
val keyed = input.keyBy(1)

Itesh, EETLAERS N T EFREEN EGHE

val keyed2 = input.keyBy(1l, 2)

af://n1497
af://n1505
af://n1509

5.5.2 FFERFIARN

B—MENBIEEFRD ZRERETFFHIRNFREREN., FREFENERTITA. pojoflcase

e

/7wl R BRI
val keyedSensors = sensorStream.keyBy("id")

// FETCHRR EAH T BERIEA
val keyed = inputStream.keyBy("_1")

// R RIS EA KR EPOIOT BN HE
val persons = inputStream.keyBy("address.zip")

// ERIEECTE T SRIEFEIOA AR B v
val keyed = inputStream.keyBy("birthday._")

5.5.3 KeySelectorif£q

E=MMEERAVSIUEERKeySelector s, ERILUNBIASFHIZEURE

// T BIAJGEMIZEA

// KEY: B3R

KeySelector[IN, KEY]
> getKey(IN): KEY

THEAAIFRIREITATRISRKFERFIERE

val input = DataStream[(Int, Int)] = ...
val keyedStream = input.keyBy(value => math.max(value._1, value._2))

5.6 SCINEREN
fEDataStream APIRERZSHSBEFEHABENRE., ATIENBFlIinkdhE X RERY LS
5.6.1 ([{EE

Flinksh i AP BEX BEE 2 LR OEE MR AT ZUXISMRERY, “0MapFunction,

FilterFunctionfProcessFunctionZs

af://n1519
af://n1525
af://n1533
af://n1537

AT LUBIT SR O a8 ORISR RIS TURE LR, FIsl T EAIGIF

class MyFilter extends FilterFunction[String]{
override def filter(value: String): Boolean = {
value.contains("fTink")
}
}

val filted = sentences.filter(new MyFilter())

HE R FFIRY

Flink{EA)avaFy LRI EIE RERIR, LMEREIAREEYNIIEFES. BRRETE
BRFTERTEHBLRETFFIE. REHREFEE—MEFFIEIRISREA, ETLUGHESTI
A—MEERE, FiEopen(TTiEHHIaHAEFIIFER, HEBEES)avaFFIIIRFFILTTIE.

5.6.2 Lambdai#§

A LAEE LambdaZRIATCRITT TURE) R

val filted = sentences.filter(_.contains("f1ink™))

5.6.3 EH&N

B, HNFEERLY LEBBE—NMeRZAH T LR TESE RS HEITERN ETXER.
DataStream APHRMHt T FERIREL, BN ZRINZIREBREMEELRTLAXSIMREEZII8E.

DataStream APIFRIFTERARREEREX NN ERE, EREAERAEMEBREAR LambdaFE]
HE, EREHIZFRLARIChFFL, fFlaIRichMapFunction, RichFlatMapFunctionZs,

HFFAEREET, RSN REHIE BRI N SN L
e open() FERERFIWMNAEX. EEESMESERARSEIRS EZEIER—RX
e close() HEZERERHNEILFZX, SEEMSRE—XNARSREEREB—X. B, BiE
BT EEIRNER.
o 54k, IEATLERAEREETH getRuntimeContext O FiERMEREIAIRUNtimePIREN—L(EE

class MyFlatMap extends RichFlatMapFunction[Int, (Int, Int)]{
var subTaskIndex = 0

override def open(config: Configuration): unit = {

af://n1548
af://n1553

subTaskIndex = getRuntimeContext.getIndexO0fThisSubtask
/ /AT — WA T AR
}

override def flatMap(in: Int, out: Collector[(Int, Int)]): Unit = {
[/ FALS 14905 MOF 45
if(in % 2 == subTaskIndex){
out.collect((subTaskIndex, in))

3
/ /80— LA AL PR T A
}

override def close(): uUnit = {
[/ A B T AR
}

5.7 S AIMERFIFlink{fis

ESCHLFlink R YR B R ERIN—Les M apikEs, NAEHITRY, YRBEEIRRZEIFraHkE. EIAER
T, FlinkEBERINEZOAPHEKER(DataStreamF1DataSet API), IJF-mz FARVE kRN IR VIR(H,

BRMEERRRATER TR AR AT LSRR

1. BRTE BTN AR ar@, Epk— 1 Far”
2. BAERREIFIinkRY . /1ib BRT, XEFEFlinkHZE sl SBSREBNEEIClasspathHh

RS M.

SF6E EFMEMEONEF

TEAE:
1. 85, BAMEIMTECERESTE. BRZFIKiL,
2. %5, BITBNELIEFHE(process functions), TR T XIS ERFNKILAHIEFH AT LT

IS, BTFLURIERERIAPI,
3. TR, BAVEERFINKAIEOAPI, BEINRENNEOEEERM T WESTI.
4. fREE T R BEXBOEF.
5. 8F, BIVEHCEIERI OINFEELAR A BIERE MRS,

af://n1571
af://n1584

6.1 EcER S

fEDataStream APIdr, EaTLl{FERYENSE(the time characteristic)&SiFFlink{EQIFEE ORTUEIEN.
B8], BEMEHER streamExecutionEnvironment —1NEM, BEZLITNE:

=] 2 5

ProcessingTime(t 1SEEFIREAMAINZNHRRELIETSRNNE. FARERLE
12Ad1E) K, MEEEERE

EventTime(ZE{4Ad EER FEAREHREFFNERRBESRE. SMAEHSETE—
) AR, FRAEANBIERIEAKAIZLTE .

IngestionTime(1& EES MR CREC SRR FRIL IREE /SRR R RIEE
IN:: 1)) FEIERIKAZ.

TEZE—MREREEFERIF

val env = StreamExecutionEnvironment.getExecutionEnvironment
/7 FERLFH A I A I]

env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

6.1.1 D ECAYEEEFNERL KL%

AT RERESHRBERETFE T IE MRREFFERMINKEHANEZIER

1. SN EHEHBO/R SRR, EREE RS SRR ERIRTE,
2. BHBIAEIRREFEE TR, BT HETRGRISRIS4RT A,

ATRIEEAOZK (AR 2 BT M 1970-01-01 00:00:00LRHIZIENEE. KULSFEF, FYBFIRL
&N FERFFKLLRIS .

DataStream APIF#E{tT TimestampAssigner #00 (HBESESS) ATFESHEBMAIRRBEG
MNEHHIZNIEE. BF, [HEEOERSEERFEREENER. ot AT HRRKESEART
ENEFREELE, YEHIRBRSHNRNE A TEZEERR AR E RS

EES TSN TERBIOEGERET 20l SISERESHR L, HER— HaEEKL
LHIFRERER. ATRE D BCRs ARSI DataStreamAVEHESEEY,

TERREE S RBOERE, BRI assignTinestanpsanduaternarks O 753

af://n1599
af://n1619

val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

val readings: DataStream[SensorReading] = env
.addsource(new SensorsSource)
// AEF L SCRT (1R 53 e 25 >R 70 T B 1) BRI A ek A 4k
.assignTimestampsAndwatermarks(new MyAssigner)

BE XA E& D Bas £ &5 /9w

1. FIHRMKGIE P ELRE: BEAER HKuL
2. ERK(ZES TR RIEMASMPIIE DN B SERCREMKL

6.1.1.1 FHAMEK (& S TS

[BHBMES BRI S X R R G LA BERN 2RI BEIER & oK A L s SR thaidt. BRARERR
At Ei&E 200%F). TJLAFEM ExecutionConfig. setAutowatermarkInterval () /55EXTEIFEATENH
1TEE:

val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

/ /B KA R] b v BB S RD— I
env.getConfig.setAutowatermarkInternal (5000)

mhle-3RR T — RIS ERE, CEIRERE BRI L8RS AR AR RS ERK AL
2., JFBEEMFTVKENT, DEsRRE— M EEESFTRARIERERE13HEZRMEAIKAILZ.

/%% 58 LA A BT K AL R N () 4y T2 /

class PeriodicAssigner extends AssignerWithPeriodicwatermarks[SensorReading] {
val bound: Long = 60 * 1000 // 18 =f4, A
val maxTs: Long = Long.Minvalue // M&Z3)5 K] E;

/%% RA KL R M i/
override def getCurrentwatermark: watermark = {
new watermark(maxTs - bound)

/%% FH SR AR T [E) BRI 77 % /

override def extractTimestamp(
r: SensorReading
previousTS: Long): Long = {
// SO A
maxTs = maxTs.max(r.timestamp)
// IRTEIE I I R
r.timestamp

af://n1644

/¥ P IXA L /

val readings: DataStream[SensorReading] = env
.addsource(new SensorSource)
.assignTimestampAndwatermarks(new PeriodicAssigner())

DataStream APINE T AN IR RIERAEEIE K LA RR S TEER.

1 assignAscendingTimestamps

NERIEATNTTRAINS AR R RIAEIRRY, BRAEHLUERTTiXassignascendingtimestamp, It675i%
(EFR=RIR AR AR . (ERXMSNURBEBERER, FEILrIREtuaiaiHt

val stream: DataStream[SensorReading] = ...
val r = stream.assignAscendingTimestamps(e => e.timestamp)

2 BoundedOutOfOrdernessTimestampExtractor

FEHBEK R A —TERIERE, (FILFUEEBARTSEZRRAEER ((EHEUHEITH
RIIE& SFrASERIZIARIT RN R NEZENER) . WTXMER, FlinkigHtT

BoundedoutofordernessTimestampExtractor , BiFmATREIEIR{EA— S8

val stream: DataStream[SensorReading] = ...
val r = stream.assignTimestampAndwatermarks (
new BoundedoutOofordernessTimestampExtractor[SensorReading]
(Times.seconds (10)){
override def extractTimestamp(e: SensorReading): Long = e.timestamp

BAME R LEIR N 10D
I BBl % 5 diextractTimestamp

6.1.1.2 FEERKAIZE D ECEE

B, MAREE—ERRRHEASTATTAESIRC, Flink aXMERRM T
assignerwithPunctuatedwatermarks &[0, ZIEOEN T checkAndGetNextwatermark () Hix,

ZIERBEBANFMR) extractTimestamp O ZIEWIRARM. 25 AATLARERE ERRTRRIK(ILZ.

TEENMIF

af://n1655
af://n1659
af://n1665

ik

* Assigns timestamps to records and emits a watermark for each reading with
sensorId == "sensor_1".

)
class PunctuatedAssigner extends AssignerwithPunctuatedwatermarks[SensorReading]

{

// 1 min in ms
val bound: Long = 60 * 1000

// WHEAZITER B AR . HORTZHERIKAIE, B 2R ax ANk A 2k H
override def checkAndGetNextwatermark(r: SensorReading, extractedTS: Long):
watermark = {
if (r.id == "sensor_1") {
// emit watermark if reading is from sensor_1
new watermark(extractedTS - bound)
} else {
// do not emit a watermark
null
}
}
// R R
override def extractTimestamp(r: SensorReading, previousTS: Long): Long = {
// assign record timestamp
r.timestamp
}
}

6.1.2 JKfitk. ERRTE AR

KNS EERTHERERTIERAITERNM.

o WFKELRERTTER, SSERANERFBEFEESHEFHTRRETIE, BRE2N
SRR

o WMEKMLZIRERITTHRIE, UER

o BETICKMLRERBSHEN, BathiBII&E

o MWTIRAENA, MEEEEEMTELZE— NS

6.2 P IREREI(Process Function)

TEEENAEEREF IR REEKAIZEER.

DataStream APIRH—ZRFIENREVGEIHR(F— U IBEE, XLEHANE VREX,
o TLUAASEAAIRTEREFKGIZ,
o IERLGEMERER Bt A0 RIES
o FEILLEIS RS (side output)IhgE, KHICRINSNMELIR.

af://n1672
af://n1685

Bal, Flinkigt T SHARRI IR ERE]:

e ProcessFunction

e KeyedProcessFunction

e CoProcessFunction

e ProcessjoinFunction

e BroadcastProcessFunction

e KeyedBroadcastProcessFunction
e ProcessWindowFunction

e ProcessAllWindowFunction,

TELAKeyedProcessFunction a4l

o KeyedProcessFunction@— PMEERiEAVRZL, {EAFKeyedStream L,

o WRHBFRICREAZRY, SRETR. —FKASKICR.

o FHEEEMTRichFunctionig¥[d, FE#R{EtTopen(). close()flgetRuntimeContext()75i%.
o 34, KeyedProcessFunction[KEY, IN, OUTIAEIMEM T LATNRFMHS G4

1. processElement(v: IN, ctx: Context, out: Collector[out]): Context2HIZRHAIRIEZ
. BRHHIEHINEE. 8. TimerServiceZFRYikME, tHh, ContextB]LUGIER
RIEZREEE.

2. onTimer(timestamp:Long, ctx: OnTimerContext, out: Collector[out]): B2— MEIER

3, SZAnIMEVHIERMARE, ESWER, IMTIHIT RS ERBIRIRIE.

KeyedProcessFunctioniZzOREABIIT

/:': ¥*

s

A keyed function that processes elements of a stream.

* @param <K> Type of the key.
* @param <I> Type of the input elements.
* @param <O0> Type of the output elements.
*/
@PubTicEvolving
pubTlic abstract class KeyedProcessFunction<kK, I, O> extends AbstractRichFunction

{
private static final long serialversionUID = 1L;

pubTlic abstract void processElement(
I value, Context ctx, Collector<0> out) throws Exception;

pubTic void onTimer(
Tong timestamp, OnTimercContext ctx, Collector<0> out) throws Exception

{3

/:‘::‘:
* Information available in an invocation of {@link #processElement(Object,
Context, Collector)}
* or {@link #onTimer(long, OnTimercContext, Collector)}.
-.':/

public abstract class Context {

public abstract Long timestampQ);
public abstract TimerService timerService();
public abstract <x> void output(OutputTag<X> outputTag, X value);

public abstract K getCurrentkey();

* Information available in an invocation of {@link #onTimer(long,
onTimerContext, Collector)}.
*/

public abstract class OnTimerContext extends Context {
public abstract TimeDomain timeDomain();

@override
public abstract K getCurrentkey();

6.2.1 TimerServiceflTimer

MR _FEAYRRSEAIAERIL, context I2ft— timersercvice O Ai%, BaIREI—
Timerservice , X MEORME T —ZRKYIATEHEXAVEE. BAUNTERED

public interface TimerService {

/% %R [E] 2 AL EE R]+ /
Tong currentProcessingTime();

/*F IR A A FT K ALLR * /
Tong currentwatermark();

/% % Y A B B 1R R g/
void registerProcessingTimeTimer(long time);

/AR T 8/
void registereventTimeTimer(long time);
void deleteProcessingTimeTimer(long time);

TSR I 2/

void deleteEventTimeTimer(long time);

af://n1736

#£KeyedProcessFunctiond, SANMERISMREHRRETM—MTEIRE, XL SRR AERE
EI—MRSEPATI,

SRBEREERR, THRESEEAMER. MRVAEFFEMNSEPRIRE, BIAENAERE
RS FRE G RIS N FRTE IS R S BN A

TEEAIELI— 1 KeyedProcessFunction, BISMHERESHNEE, WNR(ERESHIEEELMIERTEIE X F
BFEIMN Y, MakHEs:

object ProcessFunctionTimers {

def main(args: Array[String]l) {

// set up the streaming execution environment
val env = StreamExecutionEnvironment.getExecutionEnvironment

// use event time for the application
env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime)

// ingest sensor stream

val readings: DataStream[SensorReading] = env
// SensorSource generates random temperature readings
.addsource(new SensorSource)

val warnings = readings
// key by sensor id
.keyBy(_.id)
// Vi KeyedProcessFunction/H &SI TempIncreaseAlertFunction
.process(new TempIncreaseAlertFunction)

warnings.print()

env.execute("Monitor sensor temperatures.')

/** Emits a warning if the temperature of a sensor
* monotonically increases for 1 second (in processing time).
*/

class TempIncreaseAlertFunction
extends KeyedProcessFunction[String, SensorReading, String] {

// g ARk R AR
lazy val lastTemp: ValueState[Double] =
getRuntimeContext.getState(
new ValueStateDescriptor[Double] ("lastTemp", Types.of[Double])

// A R ER) — AT I
lazy val currentTimer: ValueState[Long] =
getRuntimeContext.getState(
new ValueStateDescriptor[Long] ("timer", Types.of[Long])
)
[FERIRGA LR >/

override def processElement(
r: SensorrReading,
ctx: KeyedProcessFunction[String, SensorReading, String]#Context,
out: collector[String]): uUnit = {

// get previous temperature
val prevTemp = lastTemp.value()
// update last temperature
lastTemp.update(r.temperature)

val curTimerTimestamp = currentTimer.value()
/) ENUIN SRR —AFAZER T, AT R
if (prevrtemp == 0.0) {
// first sensor reading for this key.
// we cannot compare it with a previous value.
}
// OHSE RN T R IR, AR BRSO RS v 28 LIS SRR T #RAS
else if (r.temperature < prevTemp) {
// temperature decreased. Delete current timer.
ctx.timerService().deleteProcessingTimeTimer(curTimerTimestamp)
currentTimer.clear()
}
/7 W EEH R BT 2 R BT HA AT TR, e — A s S AR R TE I 25 T HAARAE B AR

EEN)
else if (r.temperature > prevTemp && curTimerTimestamp == 0) {
// temperature increased and we have not set a timer yet.
// set timer for now + 1 second
val timerTs = ctx.timerService().currentProcessingTime() + 1000
ctx.timerService().registerProcessingTimeTimer(timerTs)
// remember current timer
currentTimer.update(timerTs)
}
}

/% I A I 2 U P IX A R s/
override def onTimer(
ts: Long,
ctx: KeyedProcessFunction[String, SensorReading, String]#OnTimerContext,
out: Collector[string]): Unit = {
// EEAFE4IStringlE i H S, HSTRE T —FER
out.collect("Temperature of sensor '" + ctx.getCurrentKey +
"' monotonically increased for 1 second.")
// TEA I AR
currentTimer.clear()

6.2.2 MEIMmEARZIXEEIE (Emitting to Side Outputs)

st (side outputs) 24 EREAT—MFE, SULUMNE— M REEZHSFEER, BalEmEAYT=
EBITL SHARFE.

af://n1749

TEEZENMIF

* T REMR T 32FMLEL, 21l Elfar R H R
:’:/
object Sideoutputs {

def main(args: Array[String]l): uUnit = {

// ingest sensor stream
val readings: DataStream[SensorReading] = ...

val monitoredReadings: DataStream[SensorReading] = readings
// monitor stream for readings with freezing temperatures
// VA F AL B o %
.process(new FreezingMonitor)

// retrieve and print the freezing alarms
monitoredReadings
.getSideoutput(new outputTag[String] ("freezing-alarms™))
.print()

// print the main output
readings.print()

env.execute()

/** Emits freezing alarms to a side output for readings with a temperature below
32F. */
class FreezingMonitor extends ProcessFunction[SensorReading, SensorReading] {

// define a side output tag

[/ SC—AE i HARAS

Tlazy val freezingAlarmoutput: OutputTag[String] =
new OutputTag[String] ("freezing-alarms")

[/ SEEGATCRM T A
override def processElement(
r: SensorrReading,
ctx: ProcessFunction[SensorReading, SensorReading]#Context,
out: Collector[SensorReading]): Unit = {
// wnftsensorreadingE /N T-32F M\ Freezing Alarmgl4iih
// emit freezing alarm if temperature is below 32F.
if (r.temperature < 32.0) {
ctx.output(freezingAlarmoutput, s"Freezing Alarm for ${r.id}™)
}
// FififisensorReading#foutputFH Hiim !
// forward all readings to the regular output
out.collect(r)

6.2.3 CoProcessFunction

SHTFERNANREERIE, DataStream APLIEIR{E T CoProcessFunction, S5CoFlatMapFunctionZg
i, CoProcessFunctiontBf@{ft T —XHERES M _LRVEEHETTIE processETement1 () 1

processElement2() ,

THEREMIF

object CoProcessFunctionTimers {
def main(args: Array[String]) {

// set up the streaming execution environment
val env = StreamExecutionEnvironment.getExecutionEnvironment

// use event time for the application
env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime)

// switch messages disable filtering of sensor readings for a specific amount
of time
val filterswitches: Datastream[(String, Long)] = env
.fromcollection(seq(
("sensor_2", 10 * 1000L), // sensor_2 g2
("sensor_7", 60 * 1000L)) // sensor_7 Riit7#

// ingest sensor stream

val readings: DataStream[SensorReading] = env
// SensorSource generates random temperature readings
.addSource(new SensorSource)

val forwardedReadings = readings

// BREEEEBUITSS connect readings and switches

.connect(filterswitches)

// BEXBEANR AARIE AKX key by sensor dids

.keyBy(_.1id, _._1)

// R R HEAY S — 1~ CoProcessFunctionfij# 0 apply filtering
CoProcessFunction

.process(new ReadingFilter)

forwardedReadings
.printQ)

env.execute('"Monitor sensor temperatures.")

class ReadingFilter
extends CoProcessFunction[SensorReading, (String, Long), SensorReading] {

// —ABooleanKHPRE RV KIMFFL switch to enable forwarding
lazy val forwardingEnabled: valueState[Boolean] =
getRuntimeContext.getState(
new ValueStateDescriptor[Boolean] ("filterswitch", Types.of[Boolean])

af://n1756

// BRAF— B % hold timestamp of currently active disable timer
lazy val disableTimer: valueState[Long] =
getRuntimeContext.getState(
new ValueStateDescriptor[Long] ("timer", Types.of[Long])

[/ AP — SRR AR
override def processElementl(
reading: SensorReading,
ctx: CoProcessFunction[SensorReading, (String, Long),
SensorReading]#Context,
out: Collector[SensorReading]): uUnit = {
// REIFZET Ntrue, truefibf g4 %, falselt HE:EFMiZe
// check if we may forward the reading
if (forwardingEnabled.value()) {
out.collect(reading)

// KLERES Ak A
override def processElement2(
switch: (String, Long),
ctx: CoProcessFunction[SensorReading, (String, Long),
SensorReading]#Context,
out: Collector[SensorReading]): Unit = {

[/ FIIFRERIFR

// enable reading forwarding

forwardingEnabled.update(true)

// VBT IR BT A

// set disable forward timer

val timerTimestamp = ctx.timerService().currentProcessingTime() + switch._2

val curTimerTimestamp = disableTimer.value()

// VORI TR T E B 38 A LEEAN LR, dn S vk i 25 s AE BR 2 T E I 3, BRI E TR S

if (timerTimestamp > curTimerTimestamp) {
// remove current timer and register new timer
ctx.timerService().deleteProcessingTimeTimer(curTimerTimestamp)
ctx.timerService().registerProcessingTimeTimer(timerTimestamp)
disableTimer.update(timerTimestamp)

// TFETES Al R B, XN VSR
override def onTimer(
ts: Long,
ctx: CoProcessFunction[SensorReading, (String, Long),
SensorReading]#0nTimerContext,
out: Collector[SensorReading]): unit = {

// remove all state. Forward switch will be false by default.
// RS E Nfalse, WpifEibiEk

forwardingEnabled.clear()

disableTimer.clear()

6.3 BEOREF

BOERANATRENEE. SNUTLETREERNEREE CSNRESERE. BF, XEER
RERETHENEEENN. BOEFRHT —METERANMIBHEHEHTOENSGE, A
ERTPRIBIRATHTITE.

6.3.1 EXEORF

BORFAILANATRES X(keyed)s R {ES X(nonkeyed IEHER L. BESR -HNEOSETFHT
it8, MIERESRNENE FERMERETLE,

ER ENBAEOEFRERL:

1. F— 2 keyBy O IEE— M EHASER, ESRENHBNRFITERITL S EE MES
2. RS RERRE —EORSRGER S TR E O PRITR

THERNAIFRR T D EAAD XNEAEFEX BN

stream
-keyBy(...) /] FIX
.window(...) // fEEE NS
.reduce/aggregate/process(...) // f5EE ERE

stream
windowAl1(...) //5E 6 04, A4 (window-all, &%)
.reduce/aggregate/process(...) // {15

6.3.2 HEEOSEES(Built-in Window Assigners)

Flink ARSI EOERSREMR TRENEO SRR, AHERMNIJSICEFHBENEO k. ET
RIERYE Ao B RIE T RS H R EEE S BRES TRAEREEN. SMREEAE—
FHIaRIRIREA— NETREIIERE.

FERBMNEOSTRERMA T — RIAELEE, SQEEEHREESEORRN, ZiAREiR
MEORHE, REEENEORSMSERA.

af://n1763
af://n1767
af://n1784

Flink 9N BB O BCSSFREBEREOAIZEELS Timewindow . HEFOZEBYSLRR FRAF N EIELZ [EA9
EXE (ZHEF) .

6.3.2.1 i#ZEEO(Tumbling windows)
RBE AN S TERAREENBEEXNMIEOF, WE6-1F7.

Window size
<

© 00 0000 00 0,00
000 00000000 {00

1210 1220

—r
e
L=}

Datastream APHRE TR NS HECSE:

e TumblingEventTimeWindows: FFE{4AdE
¢ TumblingProcessingTimeWindow: FAF4IERI[E]
o REOSERABKL— S8 gOX)

HlIFanT

val sensorbData: DataStream[SensorReading] = ...

// AR ER SR E] Sk 2y e v 11

val avgTemp = sensorbData
.keyBy(_.1id)
// RERELERE, KNS, SRR E D
.window(TumblingEventTimewindows.of(Time.seconds(1)))
.process(new TemperatureAverager)

// AR ALFRE F) R 4y B

val avgTemp = sensorData
.keyBy(_.id)
// FERRALERRIA], KN ALs, SRRIAE N
.window(TumblingProcessingTimewindows.of(Time.seconds(1)))
.process(new TemperatureAverager)

// FIFH— AP 3k Tl &
val avgTemp = sensorData
.keyBy(_.id)
// KANRLs, KRN E T, HAdcd I A BRI (RO A2 S5) R ZE 45 A A i P ke gk AT A

af://n1792

.timewindow(Time.second(1))
.process(new TemperatureAverager)

BIABRT, FshEOS542ThTE1970-01-01-00:00:00.000%43%, a0, A/NA1/NTHISECSSIEHE
00:00:00, 01:00:00, 02:00:00FMEBENEO. 8&, RIS ERSTBEIE_NMSEEE— MR
BE. TENRBER T RBEN15oFAIED, ©M00:15:00, 01:15:00, 02:15:00FEENE
:

val avgTemp = sensorbData
.keyBy(_.id)
// group readings in 1 hour windows with 15 min offset
.window(TumblingEventTimewindows.of(Time.hours(l),
Time.minutes(15)))
.process(new TemperatureAverager)

6.3.2.2 BahEO(Sliding windows)

BEOS RS TR o EAXNDEEERIEERNERBMINEN, WE6-2ATR

Fixed length

E

000000 00000000
000000/000000i00
000000/000000.00

—p
12:00 . Slide P9

XTFBHEL, YAUEEEOAMMIBHER, LIEGHhEOEHMASRER,
o LigmERNFEOXDMG, BOKEE, THxIUSESSIMED.

o LBMBREAFEHOKXNMY, BETTEASHOEALTAEN, SHER.
TEZEAMIF
// AR

// event-time sliding windows assigner
val slidingAvgTemp = sensorbData

af://n1813

.keyBy(_.id)

// create 1lh event-time windows every 15 minutes
.window(S1idingEventTimewindows.of(Time.hours(l), Time.minutes(15)))
.process(new TemperatureAverager)

// KEPRET (]

// processing-time sliding windows assigner

val slidingAvgTemp = sensorbData
.keyBy(_.id)
// create 1lh processing-time windows every 15 minutes
.window(S1idingProcessingTimewindows.of(Time.hours(1l), Time.minutes(15)))
.process(new TemperatureAverager)

// &5
// sliding windows assigner using a shortcut method
val slidingAvgTemp = sensorbata
.keyBy(_.id)
// shortcut for window. (STidingEventTimewindow.of(size, slide))

.timewindow(Time.hours(1l), Time(minutes(15)))
.process(new TemperatureAverager)

6.3.2.3 £iEEN(Session windows)

SKEBEAD RSB TERAKETEEERESNEO+F. SEEOMBRHAREIEER(session
gap) (XEEWENCRANIERR) EX.

El6-31iE T A T E= R B L RIEE .

Sessinnqag
Key 1
- 000 000 00

50000 0000 00
L 000 00000000

TEE—MIF

/¥% session gap B N155 %=/

// event-time session windows assigner

val sessionwindows = sensorbData
.keyBy(_.1id)

af://n1828

// create event-time session windows with a 15 min gap
.window(EventTimeSessionwindows.withGap(Time.minutes(15)))
.process(...)

// processing-time session windows assigner

val sessionwindows = sensorData
.keyBy(_.1id)
// create processing-time session windows with a 15 min gap
.window(ProcessingTimeSessionwindows.withGap(Time.minutes(15)))
.process(...)

HATFRIEEORNFRRIETESREEEEBEFRMATER, SO SRR EISE TR A ERASIE
fRr9EN.

o Alt, RIEEOSEERIEESMEATERSZIECHRMEDT, FRiEuTRORER,
BOXNMA&iERER.
c A5, ARFSKRBESCENFEENSGH.

6.3.3 (EE O LR FFRE]

gne.3. VSRR, BAMTEZEHEORMREEN.

FIATEONREREE R
1. IS8R AEH (Incremental aggregation functions) :

o BHNAZSEEREORLMASER FiEMEAESERESMIANBOMTEXNZEH T
-2E
o IWERHBERIFEPETAEREZSERGEFIRMERAL
o TN BAIReduceFunctionflAggregateFunctionf#f 2L EERGREL
2. 28808&\E (Full window functions)

o EBMNRFME—EONMBTTR, HEtEMERREREIABITELER.
o EMNRMEFTEERZSTE, (BIVIEERGREGISESANEE.
o TXNBHIProcessWindowFunctionfiE— N2 EF R,

6.3.3.1 ReduceFunction

ReduceFunctioniZZ W/ MERXEME, FHiSCEASHE— I XEERME. SE—1Windowed
Stream_tfzFBReduceFunctioniE X AY, ReduceFunctiontEHERSEOTRITTE. BORFEEAN
HEER, CEIHRANREXEEERNE. YRKEFTTEN, EFaNEOEREarRSHIER
ReduceFunction‘E8 I TE=REHIRZ,

TEEMIF

af://n1845
af://n1870

val minTempPerwindow: DataStream[(String, Double)] = sensorData
.map(r => (r.id, r.temperature))
.keyBy(_._1)
.timewindow(Time.seconds(15))
// HEIEIH 15 s & H I EME
.reduce((rl, r2) => (rl._1, rl._2.min(r2..2)))

6.3.3.2 AggregateFunction

AggregateFunction@—tbReduceFunctionEBRBIIE RSN, HEOEXNT

ik
* IN fgNKAY
* ACC SRINAREE (HEBIRES)
* OUT faith2RAY
*/
public interface AggregateFunction<IN, ACC, OUT> extends Function, Serializable
{
// BIE—NENERE RS
ACC createAccumulator();
// T R INES A — AN o ER R B BN
ACC add(IN value, ACC accumulator);
// THE R INAE KR R 45 R
OUT getResult(ACC accumulator);
[/ GBI
ACC merge(ACC a, ACC b);

5ReduceFunctionfAEIRIRZ, AggregateFunctionfIFRIEEHESEBIF S SEE! FARHEI TN EEL,

TEEMIF

// VPR AR IR AR SR S SR B
val avgTempPerwWindow: DataStream[(String, Double)] = sensorData
.map(r => (r.id, r.temperature))
// WiEid#korkey
.keyBy(_._1)
// 15T O
.timewindow(Time.seconds(15))
.aggregate(new AvgTempFunction)

// An AggregateFunction to compute the average tempeature per sensor.
// The accumulator holds the sum of temperatures and an event count.
class AvgTempFunction extends AggregateFunction

[(string, Double), (String, Double, Int), (String, Double)] {

// BRI, Ringsm
override def createAccumulator() = {("", 0.0, 0) // (ID, ZIn%s, il-%Ess

// A
override def add(in: (String, Double), acc: (String, Double, Int)) = {

af://n1877

(in._1, in._2 + acc._2, 1 + acc._3)

// RFE SRR (A
override def getResult(acc: (String, Double, Int)) = {
(acc._1, acc._2 / acc._3)

// G RN T
override def merge(accl: (String, Double, Int), acc2: (String, Double, Int)) =

(accl._1, accl._2 + acc2._2, accl._3 + acc2._3)

6.3.3.3 ProcessWindowFunction

ProcessWindowFunction2— Full Window Function, BE&EEONTE TR AR IR,
ZFR2NEFCE, BAE, CHHEERANEEN, thitEE0REIENPESE HIRESN
EER

Vi

* IN: BN

* QUT: HirHiZiAd

* KEY: BT

W HW HuHdE R

*/

public abstract class ProcesswindowFunction<IN, OUT, KEY, W extends Window>
extends AbstractRichFunction {

// KEOPAT I
void process(KEY key, Context ctx, Iterable<IN> vals,
Collector<OuT> out) throws Exception;

// T D EY R, JE L e PR
pubTlic void clear(Context ctx) throws Exception {}

// Context® Hi LK
public abstract class Context implements Serializable {

// RIEE O eEHE
public abstract w window();

// R8I HT AL F |
public abstract Tong currentProcessingTime();

// B4R R

pubTlic abstract Tong currentwatermark();

// State accessor for per-window state /& APIRA
public abstract KeyedStateStore windowState();

af://n1886

// state accessor for per-key global state &4 /=R
public abstract KeyedStateStore globalstate();

// Emits a record to the side output identified by the outputTag.
// ToutputTaghiin HEIH & %10
public abstract <x> void output(OutputTag<X> outputTag, X value);

process() #l clear O FBE—MContextRIEASE, XNSETHEERREK
IpRIEATTEdEWIndowssEY)

o EHRIAIRRTEIFIKAIZ

o EESMELNNSHNEMRNERRE

o BORSREHMBEOAREHRZE
o 2RREITRTHER—ELHSMEOZEHEEE.
o Bl

TR ERTEORESX—Ih8EProcessWindowFunctionFEZ2EMclear()/57%, REBOHMERZE0
EEAEXNEOIRES.

TEEMIF

// output the lowest and highest temperature reading every 5 seconds
val minMaxTempPerwindow: DataStream[MinMaxTemp] = sensorData
// XHEkeyByHkeyf 2 FEH HProcesswindowFunctionf{KEYZER 2% —F
.keyBy(_.id)
.timewindow(Time.seconds(5))
.process(new HighAndLowTempProcessFunction)

case class MinMaxTemp(id: String, min: Double, max:Double, endTs: Long)

* A ProcessWindowFunction that computes the lowest and highest
temperature

* reading per window and emits them together with the

* end timestamp of the window.

* [IN, OUT, KEY, W]

*/
class HighAndLowTempProcessFunction extends ProcesswindowFunction
[sensorrReading, MinMaxTemp, String, Timewindow] {

override def process(key: String, // . iXHJ2{LREZKID
ctx: Context,// LR
vals: Iterable[SensorReading]l,// HifH4=ics
out: collector[MinMaxTemp]): Unit = { // #ii!

val temps = vals.map(_.temperature)
val windowEnd = ctx.window.getEnd
out.collect(MinMaxTemp(key, temps.min, temps.max, windowEnd))

6.3.3.4 252 & 5ProcessWindowFunctionZ&&{#H

REBERTRETEO LAZIBESILUERTHRERS, IS CRFERRNEOMNTERRIRS. AL

BEERESHREISProcessWindowFunctionZ5&1{E .

o SELEONTESGIZNRS,
o HBOMRLASEMAR, BANEREHEELProcessWindowFunction
o process()/7iARY Iterable SEUERIREEBEME, ANEERESNER.

fEDataStream APIFh, IXSCH_EIASFEANIRIZ 24§ ProcessWindowFunctionfEAreduce()zk
aggregate(VFiEHISEMEE, WTEAIRIEF=:

input
.keyBy(...)
.timewindow(...)
.reduce(

incrAggregator: ReduceFunction[IN],
function: ProcesswindowFunction[IN, OUT, K, W])
input
.keyBy(...)
.timewindow(...)
.aggregate(
incrAggregator: AggregateFunction[IN, ACC, V],
windowFunction: ProcesswWindowFunction[Vv, OUT, K, W])

TEFE—MIF

case class MinMaxTemp(id: String, min: Double, max:Double, endTs: Long)

val minMaxTempPerwindow2: DataStream[MinMaxTemp] = sensorData
.map(r => (r.id, r.temperature, r.temperature))

.keyBy(_._1)
.timewindow(Time.seconds(5))
.reduce(

// WETTHRMNRERE [IN, ACC, V]

(rl: (string, Double, Double), r2: (String, Double, Double)) => {
(rl._1, r1._2.min(r2._.2), rl._3.max(r2._3))

L

// TEProcesswWindowFunctiont il 4 iy 44t
new AssignwindowEndProcessFunction()

// [v, ouT, K, w]
class AssignwindowEndProcessFunction extends ProcesswindowFunction
[(string, Double, Double), MinMaxTemp, String, Timewindow] {

af://n1913

override def process(
key: String,
ctx: Context,
minMaxIt: Iterable[(String, Double, Double)],
out: Collector[MinMaxTemp]): Unit = {

// BUF A ME—— oo

val minMax = minMaxIt.head

// TR SCHRELE R 45 R (]

val windowEnd = ctx.window.getEnd
// Tt

out.collect(MinMaxTemp(key, minMax._2, minMax._3, windowEnd))

6.3.4 HEXENASEF

HEFFinkfIABEEOSERS EXMEASFILUEMFSERER. ERNRGEEESANEE, B
AILABENEOET. DataStream APIXIYMRE 7T BEXEOSEFEOMSL. FRILSHECHS
BogS(assigner), filA g8 (trigger)1BBRE&(evictor), BN LAIE—TRENEOHEL, MILUABASH
— M EEXEOEF.

S RRIXE—EOET, EHEEEEEOSESR. %S ERBRSRE TEBEHNEEN/IE
A. MRXMEARAEFE, HeEZeE.

MRBENEFERETIRERSEY, NWSURSHRITER, FREREFEAEOMNKS. WRE
NEFRARBIRERSHEY, VWSHtHmEBME— N AXEFEMEEN S ET=IListState £,

B TTEKMIE—EON, eBHEEEZEONMAR. MAREX@IRITEDOE. @
EREORERE.

RERIMEERSRABREORY, REFORMNARE, MARRIMTARKKRSLIT=/M

af://n1930

L Ell

OO.. WindowAssigner
L[]

Im.lggn_aganon
NMRETARETHERAEY, VAR L
getResuTt() BHILAIEALE, —)

A4
vindow @ window @ winiow O
o

—=—=——p{ Windowhssigner

v

MREFHEET ProcesswindowFunction (£
EEO5EL) , APAIZEREM process O B#IER
HrHER

Full Window Function F——

0008 i
|
Incl.mg(lt.%g:tbn
RS HRETEEEARY, YRELEE0 \
F, NEARSEaE AL EEOREH L !
BUER, (BURT63.3.405%5) L) Lpp] ef
v {

Full Window Function

BIREE— akBE, TTLERARProcessWindowFunctionZBisiZFiEN. RIS LAME IR
BRETCEERSRETTE. FACBHETER, URBEREEEEERSRHAIBER MEAE
(BETHERGRHRE, WHNCRIBERSERT, B TZESEUtEERTER) .

TEHAEER T IMEASHEIXN M BNSMEY, KERBEXEF

stream
.keyBy(...)
window(...) // specify the window assigner #&5xhcss
[.trigger(...)] // optional: specify the trigger #5Eflkas
[.evictor(...)] // optional: specify the evictor f&E#Kkes

.reduce/aggregate/process(...) // specify the window function &% KL

s, ZHIRBEIUERE trigger B, FlinkSRHA—NEOAR trigger , ESERARBMZEIEOGA
FRETRRE

6.3.4.1 EORYSEREEHE

ERTH, BAEHEEONEGES——@RelE, RiLEREm, MRmR.

6.3.4.1.1 (IAIEIEE

SEOSERRAFENEASRE—I RN, fatliE— 150, BAit, —MEAEPEs— &

6.3.4.1.2 LSS 4HRE

—MEOBRU T AREPRSERN:

RE g
BOW NERBOEFBLE 7 ReduceFunctiongAggregateFunction, NMBEONBZELSILERES
= LR, NREOBFEE 7 ProcessFunction, MIEORNSE SR EAEORMNTER

BODEKREEED. — P EHEIMEANR. EOEFRBERENNSI TR TS

zuw A, FEONSPRERTRAEONEE. S EONSHE— SR, ©
Y T AT B O R A S R,

MEE T

e CTMERRBERANG, LUEERER A

Rk e

REE MARSRTUEMERHNEINED. 8MENEEXRS. XSt Hil&=RE
B H, MARHEOET4HR.

6.3.4.1.3 {FASHRIEG

BOEF2EEOSRMIEREOXNSRAERTERE OMEREO.

mEr—rEOR, BORF2BaiEEk BORSAEZFEONSR, EF2iER BEXMEHASIM
RERitRd=E. Fit, AR=[OESEH trigger.clear O FiEKRIEXY:, LIBAILIRES R,

6.3.4.2 O e

WindowAssigner B REFEIERITTER S ECLE LR .

af://n1962
af://n1966
af://n1970
af://n1990
af://n1996

THEEES windowAssigner 3ZORJERRD

[/ T WHRTRER

// Wi B onE 2

public abstract class wWindowAssigner<T, W extends Window> implements
Serializable {

// Returns a collection of windows to which the element is assigned

// RIBITGER TR B AR DS

pubTlic abstract Collection<w> assignwindows(T element,
Tong timestamp,
windowAssignerContext context);

// R B AS BRI ik 28 O T3 130 B U8 e ik #5115)
pubTlic abstract Trigger<T, W> getDefaultTrigger(StreamExecutionEnvironment
env);

// Returns the TypeSerializer for the windows of this windowAssigner
public abstract TypeSerializer<w> getwindowSerializer(ExecutionConfig
executionConfig);

// FIBEXANE 153 A A8 12 AN 2 4B 1)
pubTlic abstract boolean isEventTime();

// @HSEHER BT
public abstract static class WindowAssignerContext {

// R[] HT AL B]
public abstract Tong getCurrentProcessingTime();

THEENMIBEX — M EOSER

/** A custom window that groups events into 30-second tumbling windows. */
class ThirtySecondswindows extends WindowAssigner[Object, Timewindow]

// E@ARSE

val windowSize: Long = 30 * 1000L

// S
override def assignwindows(o: Object,ts: Long,
ctx: WindowAssigner.wWindowAssignerContext):java.util.List[Timewindow] = {

/7 THELFTJE B BT AR I) 0 25 SR [

// rounding down by 30 seconds

val startTime = ts - (ts % windowSize)

val endTime = startTime + windowSize

[/ BEI—AFIFE, BB TC R A HT TR I

// emitting the corresponding time window
Collections.singletonList(new Timewindow(startTime, endTime))

// FRECER I fik 35
override def getbDefaultTrigger(env: environment.StreameExecutionEnvironment)
: Trigger[Object, Timewindow] = {

// BEER[E—N AR A fil R A
EventTimeTrigger.create()

3

// EOFEILRE

override def getwindowSerializer(executionConfig: ExecutionConfig)
:TypeSerializer[Timewindow] = {
new Timewindow.Serializer

}
// fEF R A ERE A

override def isEventTime = true

6.3.4.3 il =E

ez X T MR TEOHEAREER. MASRTLURERBEEISENESRRMAIA. fINgTE
FRIEEORIBOA AR, SRRSO EBTEOSRAO R ERET, BARERSH
K.

R ERRITIRERE R, ERLUDRRREAHIRS, FERLUERIRE.

BRABMAERSEN, CESER— TriggerResult R EBAMIZAZEtA. TriggerResultB] LAENLA
™EZ—:

TriggerResult faig
CONTINUE HAEBAE

NRBFOFFBCE 7 ProcessWindowFunction, UEREIZREGTEHAL

FIRE
#R, IRBOREETINERAHRY, ISRHEREER.
BORBSEH<eER, BOSWEMER. s,

PURGE ProcessWindowFunction.clear() /3£ A LB BENX SN ED

FIRE_AND_PURG BE4itE&EORLR), AEMBRFrEIRSINTEdE(5R).

THRER— TR OIRS
public abstract class Trigger<T, W extends Window> implements Serializable {

[/ EHA RSN E O, XA RS R A

// called for every element that gets added to a window

TriggerResult onElement(T element, Tong timestamp, W window, TriggerContext
ctx);

/) 24— AR FRS A fh o s R
// called when a processing-time timer fires
public abstract TriggerResult onProcessingTime(long timestamp,

af://n2006

W window, TriggerContext ctx);
/72— AT R S ik I
// called when an event-time timer fires
public abstract TriggerResult onEventTime(long timestamp,
W window, TriggercContext ctx);

// RBIfR 2R SRR A
// Returns true if this trigger supports merging of trigger state
public boolean canMerge();

// HEANEOTREGHMRAH, 2% Rk 3% PR 6 3

// called when several windows have been merged into one window
// and the state of the triggers needs to be merged

public void onMerge(W window, OnMergeContext ctx);

// BEANTESE A G DRI, BN A%IE bRl 8 3 g S Rl

// Clears any state that the trigger might hold for the given window
// This method is called when a window is purged

public abstract void clear(W window, TriggerContext ctx);

// HTAlR IR TR SO 5
// A context object that is given to Trigger methods to allow them
// to register timer callbacks and deal with state
public interface TriggercContext {
// SREHT AbER IR [A]
// Returns the current processing time
Tong getCurrentProcessingTime();
// IRECHTIARAL 2
// Returns the current watermark time
Tong getCurrentwatermark();
// A AL BER R TH
// Registers a processing-time timer
void registerProcessingTimeTimer(long time);
// TEEEEAR I R I g
// Registers an event-time timer
void registereventTimeTimer(long time);
// TR A B B) B
// Deletes a processing-time timer
void deleteProcessingTimeTimer(long time);
// WBETR AR) T 2
// Deletes an event-time timer
void deleteEventTimeTimer(long time);
/7 SREL—ANE O fil o 2% BEAE AN /T L BIRESX R
// Retrieves a state object that is scoped to the window and the key of
the trigger
<S extends State> S getPartitionedState(StateDescriptor<S, 7>
stateDescriptor);

}

// HFonMerge i tHsk R X
// Extension of TriggerContext that is given to the Trigger.onMerge() method
public interface OnMergeContext extends TriggerContext {

// Merges per-window state of the trigger

// The state to be merged must support merging

void mergePartitionedState(StateDescriptor<S, 7> stateDescriptor);

ERERRERIITR: KSEENSHIAS

1. IRSEE:

o EftAREEHRFERBEEORESN, FSERFRENREONERBRZIAS. B, EFEiEan
[EFRFRRBS AT,
o ATHEMMRBEORTSMRIENRE, M&EMclear)HiZEEMERFAEREENXMNEEIRTS,
F{HEFTriggerContextX S MIBRFAAETAIZE.
2. Bt AR

o EAMESHAINE, —EEITEH MASRIBEENIAE(onMerge()

TEBAE—BEEXRARRIIGT

/*F SRR LI A — IO ERI M A F/
class OneSecondIntervalTrigger extends Trigger[SensorReading, Timewindow] {

// AEEAFA
override def onElement(r: SensorReading, timestamp: Long,
window: Timewindow, ctx: Trigger.TriggerContext): TriggerResult = {

// firstSeens&—/BooleanZEAIfIRA, ¥IiAE Nfalse
// firstSeen will be false if not set yet
val firstSeen: valueState[Boolean] = ctx.getPartitionedstate(
new ValueStateDescriptor[Boolean] ("firstSeen", classof[Boolean]))

[/ HEAFREN, M S
// register initial timer only for first element
if (!firstSeen.value()) {
// compute time for next early firing by rounding watermark to second
val t = ctx.getCurrentwatermark + (1000 - (ctx.getCurrentwatermark %
1000))
// EME AR, AR+ 1s
ctx.registerEventTimeTimer(t)
// FEMEE AR RS, AT RS R R A
// register timer for the window end
ctx.registereEventTimeTimer (window.getEnd)
// FHifirstSeeniki Ntrue
firstSeen.update(true)
}
// Rl Continue, &= EAHAHABAMN
// Continue. Do not evaluate per element
TriggerResult.CONTINUE

/7 AFEALEES T AR AR, IR AN T T
override def onEventTime(
timestamp: Long,
window: Timewindow,
ctx: Trigger.TriggerContext): TriggerResult = {
// UG OB AE S A RS I g
if (timestamp == window.getEnd) {
// BATVHEIE BIERRE O
// final evaluation and purge window state

TriggerResult.FIRE_AND_PURGE
// WR+1s i 2%
} else {
// register next early firing timer
// FEEMTE AN, g +1s
val t = ctx.getCurrentwatermark + (1000 - (ctx.getCurrentwatermark %
1000))
if (t < window.getEnd) {
ctx.registereEventTimeTimer(t)
}
// BT
// fire trigger to evaluate window
TriggerResult.FIRE

/7 AR BRI SR Ak, X AN ERE A, s A
override def onProcessingTime(
timestamp: Long,
window: Timewindow,
ctx: Trigger.TriggercContext): TriggerResult = {
// Continue. We don't use processing time timers
TriggerResult.CONTINUE

// D ERMERR, XA TTERE A, BT EF G rstSeentk®E

override def clear(window: Timewindow, ctx: Trigger.TriggerContext): Unit = {
// clear trigger state
val firstSeen: valueState[Boolean] = ctx.getPartitionedsState(

new ValueStateDescriptor[Boolean] ("firstSeen", classof[Boolean]))

firstSeen.clear()

6.3.4.4 I2iR28

FFinkpIEOHES, BIRBE— N UEAN. STLEENRGTEZrsZE HREOPMTE.

TERERT Evictor FEOMIRED

public interface Evictor<T, W extends Window> extends Serializable {

// Optionally evicts elements. Called before windowing function.
void evictBefore(Iterable<Timestampedvalue<T>> elements, int size,
W window, EvictorContext evictorContext);

// Optionally evicts elements. Called after windowing function.
void evictAfter(Iterable<Timestampedvalue<T>> elements, int size,
W window, EvictorContext evictorContext);

af://n2051

// A context object that is given to Evictor methods.
interface EvictorContext {

// Returns the current processing time.

long getCurrentProcessingTime();

// Returns the current event time watermark.

long getcCurrentwatermark();

6.4 Joining Streams on Time

R RES, —MNERAYESKZconnect or join the events of two streams, FlinkAgDataStream API
RETRINHRENEF: Interval join 1 Window join, AT, HiTEEAXFAINEF.

6.4.1 Interval Join

Interval JoinXd TR MREERNE, HEKILZ ENMEERE REdiEErEEIISE4HEToin
ES U

TEIZTHIMZRANB, BHEENSEHSAPI—LESEoingd, RIFFBRINT

o LIBHREANEHAESH

o MARRERARLARI T ESY, RIARIAIRE— 14, +15minSEEIRRIEM

o BXLEMAjoinpiEMYY, k—ELE. WITENaEHIbEMNSENEMT, aSEHcEHD
SEREHRS

1210:00 13:00:00
Stream A

Joined stream

11:20:00 12:15:00 13:15:00

Interval JoinfIAPIERZRNT

inputl
.keyBy (.) // fu&HEIX
.between(Time.hour(-1), Time.minute(15)) // fRxEE L
.process(ProcessJoinFunction) // JOINRGINFAFR; S KRG XA REL, the e hb i

af://n2058
af://n2062

6.4.2 Window Join

ZRENX, Window JoinEEFFlinkfIEOMNGIR. A MINRNTREELEER—NM2HEEO, H
EXANE O EESTh AT T X aRFRE R, SARRZLEProcessjoinFunctionit&,

TEmiEan FERTR

Input 1

0000,
0000

WindowAssigner

Input 2

L 1

)
Window OO Window OO@ Window O

Coe Q0O oo

Trigger Trigger '» Trigger

FERfEENT

Join Function

s MMANTEHRECIISENREEHTHE,
o AHEOSEIBEANRNBARSZIAHED, XERELAHEORNEFHEREAFRBARLN

.

o LEMOMMELRMER, HIFMINRFIE N TRAS (X5FFR) ARJoinFunction,
o IHNATTLIBENX AR, AT XA NSRRI ZERNED S, FEititg=Ri0%
BRERET S EMENE F PRI AR T H7 28R,

TEREERAIVEAFERIXAPI

inputl.join(input2)
.where(...)
.equalTo(...)
.window(...)
[.trigger(...)]
[.evictor(...)]
.apply(C...)

//
//
//
//
//
//

specify key attributes for inputl #EE% —&UifkeyIRZs
specify key attributes for input2 #&ESE FhifkeylRz
specify the windowAssigner &5 & [/ 2s

optional: specify a Trigger f&&Efilk 2% (Al LAIATEE)
optional: specify an Evictor {RE#IRe(TTLAARIRE)
specify the JoinFunction #55EAbHH R %L

af://n2079

B&TJoinz4bh, EAILAMERcogroup(). JoinFlCoGroupf R NBSIEEMBIIAY, JoinXt KRB MANKE
—XIE4 AR oinFunction, MCoGroupXI&E A MEENFSIRNEHEFEAGroupFunction, (tBHEL
BIRSHAR)

6.5 AL IFRFIENE

BHSEHEEREFRENTHIECERRN AXAEFHNEH. EFHNREEARFXMERT, MR
SHEAHF, EREEHSESESEE T EBE&RR THRENED (hMEFFIUKIEES T
BORESRMBENER) |, WixSHHEREE.

DataStream APHE{ T =F4aMEREIEHNSE:

e Dropping: EERIEFIREIEM.
e Redirect: §IREISHEEMFRIBASTF.
e Update: {RIEIREISHEINTESER, FERHER,

TE=/NMD M BX=FMER

6.5.1 EFIREIH M (Dropping)

EBREISMRERTEMEEF. XBESHEEONRIATA. B, BRENTEREFASEIZ2
EM.

6.5.2 EEMIRZEISH(Redirect)

IRESEAT LMFE AR B EERZS— M DataStream, XHFFH AT LURIE SRR RHITEFHAR
GBSV

TEEMIF, RBNTSEREHEERZIEE S

// MFEIEFE R
val filteredrReadings: DataStream[SensorReading] = readings
.process(new LateReadingsFilter)

// B E
val lateReadings: DataStream[SensorReading] = filteredReadings
.getSideoutput(lateReadingsOutput)

// WIEWRHATES print the filtered stream
filteredReadings.print()

af://n2102
af://n2117
af://n2121

// SfElE AT R S4B print messages for late readings

TlateReadings
.map(r =>
.print(Q)

*** Jate reading *** " + r.id)

/** A ProcessFunction that filters out Tate sensor readings and re-directs them
to a side output */
class LateReadingsFilter extends ProcessFunction[SensorReading, SensorReading] {

override def processElement(
r: SensorReading,
ctx: ProcessFunction[SensorReading, SensorReading]#Context,
out: Collector[SensorReading]): Unit = {

// compare record timestamp with current watermark

if (r.timestamp < ctx.timerService().currentwatermark()) {
// this is a late reading => redirect it to the side output
// IBF A E A B E
ctx.output(LateDataHandling.lateReadingsOutput, r)

} else {
// IEE BT E A
out.collect(r)

6.5.3 BEFRFIHHEHLEE(Update)

BMREBEENNTEERAAKHEH. B, ATEBENTENENER, FESE LR,

* XFfUpdateREBRIBEFREEF RERRLE REFETERENERE.
» TREFIIMNBRSE sEBLIEE T XLEH.

O8FAPRRM T —NAEREXFIRRE L IBREIH G, EFERSEEEEON, JLUSE—
NEIMNORTEIER, FRAIEIRBZE (allowed lateness), BiE TiZEMNBEOARASHEZING, TTESWE
REEFERAZ EEMER.

TEENMIF, KEEERBREEAER

val readings: DataStream[SensorReading] = 777

val countPerlOSecs: DataStream[(String, Long, Int, String)] = readings
.keyBy(_.id)
.timewindow(Time.seconds(10))
// process late readings for 5 additional seconds ¥ EIEiR%AZ)JE H5s
.allowedLateness(Time.seconds(5))
// count readings and update results if Tate readings arrive
.process(new UpdatingwindowCountFunction)

/¥ # XA A PR A 2SR F Updat e S Ab 38R 21 A /
class UpdatingwindowCountFunction extends ProcesswindowFunction[SensorReading,
(string, Long, Int, String), String, Timewindow] {

af://n2128

override def process(
id: String,
ctx: Context,
elements: Iterable[SensorReading],
out: Collector[(String, Long, Int, String)]): Unit = {
// count the number of readings
val cnt = elements.count(_ => true)
// EARE AR 5 2 B IR E
val isUpdate = ctx.windowState.getState(
new ValueStateDescriptor[Boolean] ("isUpdate", Types.of[Boolean]))
if (!isupdate.value()) {
[/ BUGHEIER AR
out.collect((id, ctx.window.getEnd, cnt, "first™))
isUpdate.update(true)
} else {
/] AREE, R
out.collect((id, ctx.window.getEnd, cnt, "update"))

B7E ARSEFHIRA

REHEFR—RNE FREEFEROEEE. FinkiNITZRBRISEEREF. BIBRNSECEEEK
SHY. fan:

o BOEFHProcessWindowFunctionIEEMNFEEL JIReduceFunctionffIFR SR
e ProcessFunctionFEE(R#FiTAIEE
o —LHIRC REEEHIFESIRS

BRTABNETF. HERE. BUBLCZI, FlinkfgDataStream APIRIRM T —L42, BFEBRRBAENX
B#i#(user-defined function)+iEfft. #EPFIER RS,

AEERNMA

1. MAIERFPEXHRHPEXFRXBNREASZRE.
2. BRI e RS E AN M= E R EPIR SR).
3. &a, HMNBEFRNTHERNSEENTEIRS, UIRANEINININERERFLRE.

7.1 SEIMBIRESEREL

RECERRFPSEEROIRE: RS (keyed state)fIEFIKES(operator state), AT, FEiIE—NA
YMAISCIl BB SIS HIREFI R E FIRSHIREL.

af://n2142
af://n2163

7.1.1 8RS

FIF BE X REE LA EMRY_E N X P EFEFIGE SIRAYRIRES. Flink&oidrprosMEER 4R —
MABES, XELHISHHEEFIBLHITES L. OHERREFIEREFRISMHTESERER
R — TR, FEPFE MR MRAVERMIRESER. Eit, FBINSIEERUTPhUEEIRE
(distributed key-value map),

KSR BERI AfEKeyedStream |,

Flink ABBIRSIRA T 2 MRSIRE. KSREENX 7HERME DINSSEFIRVEMEEN. FlinkSTHFLATIR

SIRIE:
WSIRE

ValueState[T]

ListState[T]

MapState[K, V]

ReducingState[T]

AggregatingStatell,
0]

ik

RERBLATHIEE/ME. PTLAEIL valuestate.value) SRIREY, Bid
valueState.update(value: T) SREEHf

RIFEEUATRITTERIIR. SfFadd, addAll, getZFE(E., BEARZHIRY
AN TTREMRR, ErJLUEE update 75iERFFFIRERIFERATIZER

RE—TRINERE. ZRERH TS ava MapZORIERTE

BFESIRE, SlistState[TIHIAPIAZELL. EEETEHadd)SZE]
fEAReduceFunction®R&1E. FHEEMget)HERSRE—E(ET
= XMERERSER

FiAggregateFunctionB&1{E

TEEMIF., NRERSFNENEERS DXNELSKAETBIEERNZN, RFINBEFEAHE

wREH.

object KeyedStateFunction {

/** main() defines and executes the DataStream program */
def main(args: Array[String]) {

// B EEA

val env = ...

// A E AT

val sensorbData: DataStream[SensorReading] = ...

// Jiirkey

val keyedSensorbData: KeyedStream[SensorReading, String] =
sensorbData.keyBy(_.id)

// *tkeyedstreamiifflatmap

af://n2167

val alerts: DataStream[(String, Double, Double)] = keyedSensorData
.flatMap(new TemperatureAlertFunction(1l.7))

// print result stream to standard out
alerts.print(Q)

// execute application
env.execute("Generate Temperature Alerts")

/:‘: %
* The function emits an alert if the temperature measurement of a sensor
changed by more than
* a configured threshold compared to the last reading.

s

* @param threshold The threshold to raise an alert.
~,':/
class TemperatureAlertFunction(val threshold: Double)
extends RichFlatMapFunction[SensorReading, (String, Double, Double)] {

// RRAE E—RE RS
// the state handle object
private var lastTempState: ValueState[Double] = _

// WIEA AR
override def open(parameters: Configuration): Unit = {

// create state descriptor BJE— /RSB
val lastTempDescriptor = new ValueStateDescriptor[Double](
"TastTemp", classof[Double])

// obtain the state handle #IMHLHIRI E—UEE REHEH
lastTempState = getRuntimeContext.getState[Double] (TastTempDescriptor)

// BRI R EL
override def flatMap(reading: SensorReading,
out: Collector[(String, Double, Double)]): Unit = {

// fetch the last temperature from state MURASTER| E—IkATIEE

val lastTemp = lastTempState.value()

// check if we need to emit an alert it®E=E(Y

val tempDiff = (reading.temperature - TastTemp).abs

// WREEELBE, R

if (tempDiff > threshold) {
// temperature changed by more than the threshold
out.collect((reading.id, reading.temperature, tempDiff))

}

// update lastTemp state IR
this.lastTempState.update(reading.temperature)

TEXIPIF RN E R TR

o FRIE—MNRBUWR, BRI FEIRIchFunctionfiJRuntimeContext@FlinkiEM—MASHER
3.

o BMRSEIEEE B CHFENRSERT, MATPEBIKSHBIRINSIEIESE. 5
0, val lastTempDescriptor = new ValueStateDescriptor[Double]("lastTemp",
classof[Double]) F, REEFIEValueStates B CRIASHIARTE
valueStateDescriptor , FINBITIRMAINSHIZBIR 1astTemp FIAZSHIZEEY Doube 5L
ISR R,

o ReducingStatef]AggregatingStatefiRFFELHILAHAEEMIME M
ReduceFunctiongAggregateFunction3 NI NIZKSHNEHITES.

o BIIEMEZ MRS, LM REREEAE Z MNSSR

o FAFInkFZCESENRFIILEE, FRLIEAFT R SEELIERE. (ARIEREHEERT

classof[Double])

o —RIBKSEIRAFREIEFTHNRREE. AR, IRESIBSEopen(BiEPHMME. Fla0, BIE
7B TastTempstate X MASHAERA T XHIMREE, FHETE open(FHiEH
lastTempState = getRuntimeContext.getState[Double](lastTempbDescriptor) , BEE#]

|,

L—PRECEM— ISR, Flink&ERERIRTRESEBIXINTHATINAPRE. M
MERSERFIEMNMAMFREMRAN, TEaREIMEE. EXFEMERT, FinkEHSEmEmMIv
&5 | BRSNS iR R ERNIRERE. WRERE, FRISIRaz,

LtE5h, FlinkAPIARRME Y —MEREIEIEE, BARXMEESASTIS LEZERRAIINEE,

val alerts: DataStream[(String, Double, Double)] = keyedData
.flatMapwithstate[(String, Double, Double), Double] {

// I —ANFARRA MBI GXAENT LR E 22 PR

// B—ASHUE TS

// HEASEOE PR (F11nke MG i R B HDIRZS H R T 2X 8D

// FB—AREMEZT1atMapf s Ry

// AR BME R A S FPRAS (FT114 nkeas X AME RN 5 i P PR A3 T B 5T

case (in: SensorReading, None) =>{
// no previous temperature defined; just update the last temperature
(List.empty, Some(in.temperature))

3

[/ MEEAESE—AHOERIARBOL CER AT, X E G D
case (r: SensorReading, lastTemp: Some[Double]) => {
// compare temperature difference with threshold
val tempDiff = (r.temperature - TastTemp.get).abs
if (tempDiff > 1.7) {
// threshold exceeded; emit an alert and update the last temperature
(List((r.id, r.temperature, tempDiff)), Some(r.temperature))
} else {
// threshold not exceeded; just update the last temperature
(List.empty, Some(r.temperature))
}
}

712 8FIKE

BNEFRIHTESEERFRES. £EFIIE—FHTESPRIBNRESMERA LUBEHERFVAE.
FlinkSzis=MEFIRE: JIRRE. BREFIRNSLARS BIRE.

WIBRECTLUETSER Listcheckpointed EOKEEFIRIAS. BMERHYSBEFRSIIEER
BIRERTEFRLI, AAfSiBidListCheckpointiZHHIM M EEEL SNSRI ZH:

TE*REEListCheckpointediZAYIRERD
pubTlic interface ListCheckpointed<T extends Serializable> {

/7 DAFIZR T 20k (8] — A B HOIR A B P
List<T> snapshotState(long checkpointId, long timestamp) throws Exception;

[/ MREAGEUEHIFZ R E R HCRTS

void restoreState(List<T> state) throws Exception;

TERIBFMIF, CBRTITA—NREELHIListCheckpointiZ O, ZRENEFHENFHTES
FEtREEIT B E

class HighTempCounter(val threshold: Double)
extends RichFlatMapFunction[SensorReading, (Int, Long)]
with ListCheckpointed[java.lang.Long] {
// RECHAMES MR G
private Tazy val subtaskIdx = getRuntimeContext.getIndexofThisSubtask
// AHTHEES CHRTES P ARRE)
private var highTempcnt = OL
// SCERRREL, BRI I B AU A T AR+ 1
override def flatMap(
in: SensorReading,
out: Collector[(Int, Long)]): Unit = {
if (in.temperature > threshold) {
// increment counter if threshold is exceeded
highTempCnt += 1
// emit update with subtask index and counter
out.collect((subtaskidx, highTempcCnt))

PSRRI PR, XA bR 2 T8 AR ok 25 it B 1
* @Param chkpntId: % f%S
* @Param ts: JobManager8!EAGIN A i ARk
* @Return AR —A TR AR A
Z
override def snapshotState(
chkpntid: Long,
ts: Long): java.util.List[java.lang.Long] = {
// snapshot state as Tist with a single count

af://n2219

java.util.collections.singletonList(highTempCnt)
}
/ %
* AT REARIRE, XA REAEWI A1 R ECRAS B 4R
* @Param state: MXAFIRFEAFNAHIRGE
*/
override def restorestate(
state: util.List[java.lang.Long]): uUnit = {
highTempcnt = 0
// restore state by adding all Tongs of the Tist
for (cnt <- state.asScala) {
highTempCnt += cnt
}
}
}

7.1.2.1 AT ZEEEFIRESEFIRFLIRE?

B LN, EAsEREAT AR FIRSIEIREIIRTIZE a list of state objects)iLIE, XZEHE
JListéEHE SFEHE FNSHRERIFHITHE. NTEMER>CEEEFREHRERFTTE, FE
BEFRSENDEAESHEDIESLA, XFESBHEH KSR, M—AKR, FIRELLE
MEEIES FEMSH

BIFRERSSIIFR, BEEEAIRSHREATLAFER snapshotstate) #1 restorestate() J5iA3L
TILBEE,

e snapshotstate() HiEEAMETFIRERBASNED

e restorestate() JIAEAMETFIRENZS N EBoBEEREK

L NEFRESHIKER, 2RSS NS EFHREHTESY, A
restoreState()755%.

MRHITESLLRENR £, LABEES BN IEAZIRE, IPAfEArestoreState()/5i%
B, ASHEN ZFIE.

B4, FAIBEAFMIIFRE java.util.collections.singletonList(highTempcnt) , XBJREFELE
T ERSEBIMESIREREMITE, FIBIIBS0E—TXANAE, WS

// S EERAETTANFRIRAS, DA LR B 240 A) B8 47 b 43 A
override def snapshotState(

chkpntid: Long,

ts: Long): java.util.List[java.lang.Long] = {

// split count into ten partial counts
val div = highTempCnt / 10
val mod = (highTempCnt % 10).toInt
// XA AT B TR A0y, R B0 FIR
// return count as ten parts
(List.fi11(mod) (new java.lang.Long(div + 1))
++ List.fi11(10 - mod) (new java.lang.Long(div))).asJava

af://n2230

7.1.3 (EHEET 1#E1K7&(Using Connected Broadcast State)

RNAHRR— T EILBREFHERNER SR EFIMBEHTEST, FREFEATIRERSH
1THER.

BIgn, —AFUNFRAT—MRETIX MR SR, I:l £ connect X MANIR. EFEEEN
NSRAIERTE RS, RIFNFESMNREATT 178, RILAEGMESRAMES BRI E!
A, EBFEIX ARSI S

EEREERENMIF, EENILHAN Bk SHRERENRERERS

object BroadcastStateFunction {

/** main() defines and executes the DataStream program */
def main(args: Array[string]) {

// set up the streaming execution environment
val env = ...

// ingest sensor stream
val sensorData: DataStream[SensorReading] =

// define a stream of thresholds

// EX—ABUARR GG, T2 7, X0 DS E D

val thresholds: DataStream[Thresholdupdate] = env.fromElements(
Thresholdupdate("sensor_1", 5.0d),
Thresholdupdate("sensor_2", 0.9d),
Thresholdupdate("sensor_3", 0.5d),
Thresholdupdate("sensor_1", 1.2d), // update threshold for sensor_1
Thresholdupdate("sensor_3", 0.0d)) // disable threshold for sensor_3

// FER#T I key
val keyedSensorbData: KeyedStream[SensorReading, String] =
sensorData.keyBy(_.id)

// BIE—T RS HRA (— MRS HIARR

// %5 R"thresholds"

// BERZETEString

// 1EI2EEDouble

val broadcastStateDescriptor = new MapStateDescriptor[String, Double](
"thresholds",
classof[string],
classof[Double]

// AR AEEATFRRS IR R RO — A R
val broadcastThresholds: BroadcastStream[Thresholdupdate] = thresholds
.broadcast(broadcastStateDescriptor)

// KGR RS)RR, JF HLATH Ab 2 R Hab 31
val alerts: DataStream[(String, Double, Double)] = keyedSensorData

af://n2248

.connect(broadcastThresholds)
.process(new UpdatableTemperatureAlertFunction())

// print result stream to standard out
alerts.print(Q)

// execute application
env.execute("Generate Temperature Alerts")

}

case class Thresholdupdate(id: String, threshold: Double)

/~,':~,':
* Wb PR H R B se P KeyedBroadcastProcessFunctioniz i, EAMUANEAISH
* The key type of the input keyed stream.
* HR RN E (The input type of the keyed (non-broadcast) side.)
* R CERMZEA (The input type of the broadcast side.)
* 2R
*/
class UpdatableTemperatureAlertFunction()
extends KeyedBroadcastProcessFunction[String,
SensorReading,
Thresholdupdate,
(string, Double, Double)] {

[/ BUERSHIR T

private lazy val thresholdStateDescriptor
= new MapStateDescriptor[String, Double]
("thresholds", classof[String], classof[Double])

// ValueState[Doublelik#& H kA&7 L —ANEER
private var lastTempState: ValueState[Double] = _

// VIR R
override def open(parameters: Configuration): Unit = {

// Bl E— R RS R AT

val lastTempDescriptor

= new ValueStateDescriptor[Double]("TastTemp", classOf[Double])

// WRPEHIRFRYIE L —NMRERS

JastTempState = getRuntimeContext.getState[Double] (TastTempDescriptor)
}

[/ BB RRR A
override def processBroadcastETlement(
update: Thresholdupdate,
ctx: KeyedBroadcastProcessFunction[
String,
SensorReading,
Thresholdupdate,
(Sstring, Double, Double)]#Context,
out: Collector[(String, Double, Double)]): Unit = {

// TR SGREUT HRRAS
val thresholds = ctx.getBroadcastState(thresholdStateDescriptor)

// WMEAENREFREAET0.0d, B RS
if (update.threshold != 0.0d) {

thresholds.put(update.id, update.threshold)

} else {
// WMEAENPBENO0.0d, Bt AR EBIE 1, St E)RRt .
thresholds.remove(update.id)

}

// AEEIEE R FE A
override def processElement(
reading: SensorrReading,
readonlyCtx: KeyedBroadcastProcessFunction[
String,
SensorReading,
Thresholdupdate,
(string, Double, Double)]#ReadOnlyContext,
out: Collector[(String, Double, Double)]): uUnit = {

// AR HRRES
val thresholds = readonlyCtx.getBroadcastState(thresholdstateDescriptor)
// RE ey S B RIME, R)5 LR S e, R
if (thresholds.contains(reading.id)) {
// get threshold for sensor
val sensorThreshold: Double = thresholds.get(reading.id)

// fetch the Tlast temperature from state

val lastTemp = lastTempState.value()

// check if we need to emit an alert

val tempDiff = (reading.temperature - TastTemp).abs

if (tempDiff > sensorThreshold) {
// temperature increased by more than the threshold
out.collect((reading.id, reading.temperature, tempbDiff))

}

// EE L —NEE
this.lastTempState.update(reading.temperature)

}

T EERITG, BILRERE—T

* KeyedBroadcastProcessFunctionf7cRAMET AR RMTRA. F5iLprocessElement()f]
processBroadcastElement()24{HHY L T —N3HHES, — P RAENE.

7.1.4 {EfCheckpointedFunctioni%[]

CheckpointedFunctioniZQRIEERRSRHNVRREERD. CRHETHFHEKTMNLGEP BIRE
MEFRE, AERE—RIFHEEFIIRRERSERES R REF S TEEHRIREPRE)
YO,

CheckpointedFunctioniZzOENX TR N GIE, initializeState()fsnapshotState(),

af://n2263

e initializeState()75iE7EIEECheckpointedFunctionfFHTFES AR, HEmNAREFSHTF
HIEMEFREENESE, MetE@HTESNMRARXANGZE. ZAEETRECKSHERERK
2

o EHERISE R ZHI, snapshotState()/5iE#HEAMA, snapshotState()5iEHBIRRIREIRERSE
RESERkZ Bl EMATEIRSHR (XHEMBERZFINAMIESIESHEFD) .

TEHEREMIF, XMIFRBEERRSHEFRES, RS RIS I EFISEEIERES
SR T ISR EE.

class HighTempCounter(val threshold: Double)
extends FlatMapFunction[SensorReading, (String, Long, Long)]
// FEszHlcheckpointedFunctionf#%
with CheckpointedFunction {

// AR, HRGE U HAE S R AE R RN
var opHighTempCnt: Long = 0

// BERES, FRGEAA LaTkeyiE i RAE AR E AN S
var keyedCntState: valueState[Long] = _

/7 FETRAS, FHRAE A 4 T AR 55 Rt 4 1 i B4
var opCntState: ListState[Long] = _

// ACHERE
override def flatMap(
v: SensorReading,
out: Collector[(String, Long, Long)]): Unit = {
if (v.temperature > threshold) {
// ARHA -+
opHighTempCnt += 1
// BEHERE
val keyHighTempCnt = keyedCntState.value() + 1
keyedCntState.update(keyHighTempCnt)

// emit new counters il
out.collect((v.id, keyHighTempCnt, opHighTempCnt))

// Wtk
override def initializeState(initContext: FunctionInitializationContext): Unit
= {
// initialize keyed state ¥J#AfbiEIRA
val keyCntDescriptor = new ValueStateDescriptor[Long] ("keyedcCnt",
classof[Long])
keyedCntState = initContext.getKeyedStateStore.getState(keyCntDescriptor)

// initialize operator state HJIfHfLE IR

val opCntDescriptor = new ListStateDescriptor[Long]("opCnt", classof[Long])
opCntState = initContext.getOperatorStateStore.getListState(opCntDescriptor)
// initialize local variable with state A T IRA R E AHAS B 1IH
opHighTempCnt = opCntState.get().asScala.sum

// P R TS RTS8

override def snapshotState(snapshotContext: FunctionSnapshotContext): Unit = {
// update operator state with local state {A<HAs ffif 7 AR B 5 B 5 TIRA
opCntState.clear()
opCntState.add(opHighTempCnt)
}
3

7.1.5 S B A 5SRRYEA]

HTRERIE, Flinkal ISEIEAEEFRIMRE. A, 5—1aXE, R EREERRBNMEZER
[=, MAXEASLF—HIRES. WF-EEF0R, NENEREE=MERESEMN. (fi,
SERBEIEE ARG E—EMEERIINBRFNEIE LU MR R HERERF A AHRICEIRICR,
DHRRE H ISR BN TASEMAREEE.)

QEMBEFISHRSHEINNENGESFMRAET, AESAEKN. Fit, 2BfJobManager g
RECEREEMI.
EEEKSE AT HERE F T LASEM CheckpointListeneri& [, X MEORMT

notifyCheckpointComplete(long chkpntld)/5i%, jobManagerffie—MEBRRINERE, Z5iE
SRR,

7.2 ABRSHM AR ESIERE

FinkBIStiEE_REIREEERSE, RNBEEAMEMEERIE, TR

val env = StreamExecutionEnvironment.getExecutionEnvironment

// set checkpointing interval to 10 seconds (10000 milliseconds)
env.enablecCheckpointing(10000L)

RERERUNRIEY 1 0s)SRMtGE R HLHE R IR A FHRE LA MRS IR S PR RORIE. S
A EREREFILEREESERENTE, ETUSEHERIIKE, RAFTEEHIEEEE

//I\D

Flinkigt 7 Btt—Lea] HHETROECEIRIN, tban

—H M REER RS ED—IRRTIERE
HREERNYE

FSRENH KR EE T E AR RS E
RS EIRHESRANELT

af://n2277
af://n2285

7.3 BFRBIAS R BRI AT 4EP %

ELIET T JUBNNAIASTRERNES, EEXEEMTE. B, KNEETHNAEFEEE
—LeiER, tbaliESbug, NN, RESMIRINEE, SEREEFIHITES. Eit, SBIRKSER
HFRhR AN AR ES TR E S E OB HESRREER.

Flinki2tRFRREEHPN IS, BR, EEXRNRRPHEBISSERSEFEEERISE, LU
RIS AT LAE R th A N FRFE R

1. BFRIIE—IRRR
2. BAHITERHNETRIOEF).

BFHE—RARIRAFTEREWEIRERF, FEEN. WRIRRAMSHEAFHTEREN, WA
BEMLARIRYRE RER LA,

7.3.1 IEEEFE—tRH

Rz AN BB N EFEEE—RRAN. XMRRAFRRERTITEE. SNRERENNEER
Y, IRRATHARERTIPRSRGEZIEEINBIENEF. RAEAEEINAREFHNEFHIITA
FHERRY, FRERRERRSIKERIE].

IREHTINT, BRENFNRE

val alerts: DataStream[(String, Double, Double)] = keyedSensorData
.flatMap(new TemperatureAlertFunction(l.1))
// uidinik, HRWEIFATE
.uid("TempAlert™)

7.3.2 AERBRSHEFEXRKHITE

BFRAHTESHEN TEFENRINSHTHEIRT, FrAZREAME. ZHERY TH#IKS
MBEFILST REMRAFHTESE. (BA—MHTES EVEEG—MREESR)

THRTMIRERAFHITE

af://n2303
af://n2316
af://n2323

val env = StreamExecutionEnvironment.getExecutionEnvironment

// RN B E K IAT

env.setMaxParallelism(512)

/] RETREBKHATE

val alerts: DataStream[(String, Double, Double)] = keyedSensorData
.flatMap(new TemperatureAlertFunction(l.1))
// set the maximum parallelism for this operator and

// override the application-wide value
.setMaxParallelism(1024)

MRBFEEMRFRBRERAHITE, UARBEE MRAIFTENRERE

o MEBHITENTETF128, VWERKHITEN128,
o WIRIZIBMEFAIHITEAT 128, MEAFITEITES Min(nextPowerofTwo(parallelism +
(parallelism / 2)),2A15),

7.4 BINSHABREEE R ST

BFERSHRREST N BREFIEE M (robustness)fIT%gE(perfermance), ELANERRS G, 1€
BEREENERE. RSN mETIERIMERE,

7.4.1 ERIRSEIR

KERIRASEE SMESHFRE, AENTRERISERANETEFHE. BTFARSTLL
ARSI THEHPIRER, RSEmEAEER(pluggable). FARMRARLIER FRRS
BIREHSREEFENIRIRE. REERINERTERNSNARFIITE It n. SHIRSREIR
R T IRSIRIBRYSEM, tinvalueState, ListStatefIMapState,

Flinkifit 7 =FMrRE /5

e MemoryStateBackend
e FsStateBackend
e RocksDBStateBackend

7.4.1.1 MemoryStateBackend(R7EztHI, BEEIR)

MemoryStateBackendiERSIEA BRI RIZ(ETETaskManager JVMHIZAIMHE L,

o fA8N, MapStatefjava HashMap¥igszis,
o BAXMAARHTIFERINESER, EEXNARFNEIITEERE.

af://n2337
af://n2341
af://n2354

o WRESELHIKPRETTBAK, IVMIIEE LETHRBESLAITe=HET
OutOfMemoryErrorm#iRE.
o ItHh, XMITIARIRe IR ENLE{S(garbage collection pause)jalf, EABKITEK
HIFERIXI SRt L.
o HARKEE SRR, MemoryStateBackendiGIk&&iXLS/obManager, JobManageriSEH{FfETEE
AER, BElt, NEEFRNERSSAES)obManagerfilE. EAEHNREESLMRN, AL
ffJobManager KMAYER FE2EXIRE.

o HTFXLPRSEI, MemoryStateBackend{UEZFRATHEMIRIXEN.

7.4.1.2 FsStateBackend(FHIASERE, KRESSIEZW)

FsStateBackendfETaskManagerfJJVME_EEERMIRTS, Hii&MemoryStateBackend—#,
#AM, FsStateBackendZH T, MERRKEEATEFIAMRE.
FsStateBackendiZft 7 ITFESIEERBINI A HBIRFIF A AR RTHMIESIE.

B2, B%ETaskManagerIEA/NRIRS, ATReHIEIRIKEE S,

7.4.1.3 RocksDBStateBackend (&SR 4k, ISESHIFRL)

o RocksDBStateBackendiEFrE RS (EZ A HRocksDBELfH,

¢ RocksDBE—MRALFEFE, TISEUESANEIAELER. 797 MRocksDBIESHIE, FEiH
TR FII., TTERRISESAT, RocksDBStateBackendiFIGIRS RiXRiniRIFA MR
gﬁo

o FILGFEBIFERRSHRATER, RocksDBStateBackend@— MNAEATEHEE,

TEERINIS N BEERS G

val env = StreamExecutionEnvironment.getExecutionEnvironment
val checkpointPath: String = 7?77

// new —RocksDBIRZS & i S5

val backend = new RocksDBStateBackend(checkpointPath)

// configure the state backend &'
env.setStateBackend(backend)

7.4.2 ERIRSIFE

E79RocksDBEEIRAIRSES S R FFIIIRFEFIME, FrLUASREREFRWEFERE. Flan:

e ValueStatefEHFihIAITRTERFIIN, EREMNSTEFTIL.

¢ RocksDBStateBackendfiListState7EiEBV{E < RIXIFABEFIRFBH#HITREIIE. BE, @
ListStateiiRINEEMEZE—MERNINRE, RARBEINNEZSERIL, MBNMIRATERERF
Hlik.

e MapStatefJRocksDBStateBackend RiHES ARSI HRMEFFIIES]. (AILARFIIEE
REFFICENERESRANE) .

af://n2372
af://n2384
af://n2397

Z2HF,

o ft¥JRocksDBStateBackend3&iit, {5 Mapstate[X,Y] ZLY valuestate[Hashmap[X,Y]] BE
Ao
o MREFEFFIREIMOITTR, BRMAGIASIE, FPA Liststate[x] Etb

valuestate[List[X]] B,

LtEsh, BRI TFR—MASER, BRREARREHF IR,

7.4.3 BALIEIRTSHES

RN R FE BRI SIS TR SEE. NRMARS FEEMN, EEANRAESTEAXFFRTE
MRER, FRIEREBUEIEANBRHESIIRIR. AT HILNANEREFEREREmEMN, EHEF
KREHANFEEE, BTRSHEERNEFEN, FLIFlinkREEBiBERIASHBERE S

B, 8k, FFEERSEFEHEGIFBEFHRERSHRXMIEE, BREFSTREK.

RSTRBRI— M U RE 2R TRIEK.

Blan, FERESMR, SEEHE— session_id@B, ZBUE—RITEELNR. mHXMER
T, BEERRSHRESTRBERUS RIS, EERHEX, KESRENEX, (ERiITHA RN
WSERIBEMER. X NIRRT 2RI HIRE.

HEXMERBSEEREESD DataStreamAPIFIRIBEEF L, tbal: $H¥dKeyedStreamBIYARLEN
ERGEE, min. max. sumFZE, FiLl, EEAXEAEE N, —CEFERIEZAZTIR
1)1 =]

BAITLUBETIEMITATRE, FARRRIEREAY SSRGS IR

TEHEMIF. ERERE—/NTRIERHIFIEENEERIRE.
object statefulProcessFunction {

/** main() defines and executes the DataStream program */
def main(args: Array[string]) {

// set up the streaming execution environment
val env = ...

// ingest sensor stream
val sensorbData: DataStream[SensorReading] = ...

val keyedSensorbData: KeyedStream[SensorReading, String] =
sensorData.keyBy(_.id)

val alerts: DataStream[(String, Double, Double)] = keyedSensorbata
.process(new SelfCleaningTemperatureAlertFunction(1l.5))

af://n2417

// print result stream to standard out
alerts.print()

// execute application
env.execute(''Generate Temperature Alerts")

class selfcleaningTemperatureAlertFunction(val threshold: Double)
extends KeyedProcessFunction[String, SensorReading, (String, Double,
Double)] {

// RE, HREGBAF E—NEE
private var lastTempState: ValueState[Double] = _

/7 RES, FREAE E— N THE 2% s a] 55
private var lastTimerState: ValueState[Long] = _

override def open(parameters: Configuration): Unit = {
// EMFERIIEA E— AR EIRES
val lastTempDescriptor = new ValueStateDescriptor[Double]("lastTemp",
classof[Double])

lastTempState = getRuntimeContext.getState[Double] (TastTempDescriptor)

// FEMFHRIGEA AT AR A
val timestampDescriptor: ValueStateDescriptor[Long]
= new ValueStateDescriptor[Long](
"timestampState", classof[Long])

lastTimerState = getRuntimeContext.getState(timestampDescriptor)

// AP PREL
override def processElement(
reading: SensorReading,
ctx: KeyedProcessFunction[String, SensorReading, (String, Double,
Double) J#Context,
out: Collector[(String, Double, Double)]): Unit = {

/7 VEEE R S R ik R B (]

val newTimer = ctx.timestamp() + (3600 * 1000)

// RECAHT T 3%

val curTimer = lastTimerState.value()

// MR ET T g R S R T g
ctx.timerService().deleteEventTimeTimer(curTimer)
ctx.timerService().registerEventTimeTimer(newTimer)
// HEFEHI g i A A B TastTimerstatelR4s E
lastTimerState.update(newTimer)

// RECE—/NERE, PSR S e 2 T R R
val lastTemp = TastTempState.value()
val tempDiff = (reading.temperature - TastTemp).abs
if (tempDiff > threshold) {
out.collect((reading.id, reading.temperature, tempDiff))

// EEE—ANRE
this.lastTempState.update(reading.temperature)

}

// VTETES B AT, XA R EH i %
override def onTimer(
timestamp: Long,
ctx: KeyedProcessFunction[String, SensorReading, (String, Double,
DoubTe)]#0OnTimercContext,
out: Collector[(String, Double, Double)]): Unit = {

[/ BB AN R B A WA R R S IR ES
lastTempState.clear()
lastTimerState.clear()
}
}

7.5 EFHBERESHA

MR EETHRRSREAL TERESHISEEEIEFERE. B, FNIEREFORNARE
WRATEHRES, AEXRBRE

FlinkiE@Bd = MR SLHARAN BT

1. AIEEE TN AERRER
2. BIEBhRAR
3. IMRTFRISENHRRR A HIN A,

EEREMERANRESFREN, FeclEH. hatEik, FinkSHFTE=MEH (REX=M
EHRREREREN)
o EAREMEMIFINERSHER TR AEE. XEERANATRMIET.

o MRARFHIFRE MRS,
o BUENRSRIERBEIRTHERRBRESINEEFIIRES (RESoRRILFRS)

7.5.1 (RIFMEIRSERRE

RN AER BRI ESIMERSHER THTTEN, BACKRESRESEEN, FETLMN
ERARERE.

NREANAFIFNERSEF, SRRERFMERIRES, WENREFREINAER, RS
WBAE. GhMINEFEIRE, EaRiath=)

af://n2431
af://n2453

7.5.2 AR FBFRHIBRIRZES

ERLABES MR RS RN ARER. TLARRRENSFHNANEFHRERE—MRES. XMERT,
R RBIEB D IR T RS BT AN LA,

AANERT, FinkiSAeBd RBRERFRTESHMBRSHNARER, LBRELXRERFIONR
&, B2, JLFERALZEEE

7.5.3 (ZMEFHIRE
MRS RIS, ERIEMRSREHIEIRS.

—hRKiR, SREMIPIERANEN

o EENMUASRIEIBHEL, FlaNkEValueState[Int]EH/9ValueState[Double],
o EMUASIRIBAISEE, a0, i§ValueState[List[String]1EEXIAListState[String]

X FXFFRIENR, Flinks#H 70 R

* FlinkBREARZIFEARSIRIBRIZE

o HATIRAIFFIARFIMCANE. TESRSAIEIESEEL: Flink 1.770, WNREWEREUNE
M 9Apache Avro3B!, FHEFEHRREEZRIBAVroRIRIVECHINI MR ELE MR
AvroZEBY, FBASTIFEBUIRSAIEEEL,

7.6 A &Fi@FUIAE(queryable state)

TSN ARESHMNAEZ TSR, Apache FlinkiZ 7 AIERASAV Sk S HRIAA Lt
SER. EFlink, (HIRRSETLUEATERRSIARIRIT AR BRI BN BER.

7.6.1 IERARIRSIRSHISFEREINH

Flink@Y T EIRSIRSS R ="MBA AR

af://n2459
af://n2465
af://n2483
af://n2487

lmﬁ”‘w;’% 3. Key [l is maintained by TaskManager

TaskManager 1

QSChentProxy | QSServer QSClientProxy | QSServer

4 Get State for Key Il
S. Return State for Keyl}

1. Get State for Key [l | |6. Serve State for Keyll

QCient
Application

¢ QueryableStateClient: 4MEBRIFE {EAQueryableStateClientSIRAZEIAFIFRENVGEER,

e QueryableStateClientProxy: QueryableStateClientProxyi&SHIBRQSClienthSigzR. &1
TaskManager EEREIT— M EFImUE. ERRESDHESNTaskManager, ElttClientProxyst
Aia)obManagers&BHIFEEEIHRPASHER N askManager £, ZAfFMEIXNaskManagerf
QSServer&ZiXiEK,

e QueryableStateServer: QueryableStateServerlifiZFimXIEANEK, T \TaskManager#p
IE{T— StateServer, ZServer NAHIRZSBIRIRAVEEIRT, FHEHEIREILQSClientProxy,

7.6.2 3P REVFINIS

IH—MNEETEARRSHURNARESS. FEMIHEEN —NMEERIRSHNRE, HEFSRS
5|AZal, J@FsetQueryable(String)/5iAFERSLAAAEIIN. W TFIF=

override def open(parameters: Configuration): uUnit = {

// BIERERIB T
val lastTempDescriptor = new ValueStateDescriptor[Double]("lastTemp",
classof[Double])

// AT EWPRE, IR E B AR IRST
lastTempDescriptor.setQueryable("lastTemperature")

// EMFERIEAARAS
lastTempState = getRuntimeContext.getState[Double] (TastTempDescriptor)

af://n2499

BRIEZSN, FlinkiESZi5FI BEHECS R MBS HEEI TSRS+

val tenSecsMaxTemps: DataStream[(String, Double)] = sensorData
// project to sensor id and temperature
.map(r => (r.id, r.temperature))
// compute every 10 seconds the max temperature per sensor

.keyBy(_._1)
.timewindow(Time.seconds(10))
.max (1)

// store max temperature of the Tast 10 secs for each sensor
// in a queryable state
tenSecsMaxTemps

// key by sensor id

.keyBy(_._1)

.asQueryableState('maxTemperature™)

7.6.3 MIMNBERRE RS

FRAEFjvmER AL LA QueryableStateClient ZIFTEIE{TRIFlink AR RI ZIRTS.,

TEEMIF

object Temperaturebashboard {

// assume Tlocal setup and TM runs on same machine as client

val proxyHost = "127.0.0.1"

val proxyPort = 9069

// jobId of running QueryableStateJlob

// can be looked up in Togs of running job or the web UI

val jobId = "d2447b1la5e0d952c372064c886d2220a"

// how many sensors to query

val numSensors = 5

// how often to query the state

val refreshInterval = 10000

def main(args: Array[string]): uUnit = {
// configure client with host and port of queryable state proxy
val client = new QueryableStateClient(proxyHost, proxyPort)
val futures = new Array[

CompletableFuture[valueState[(String, Double)]]](numSensors)

val results = new Array[Double] (numSensors)
// print header Tine of dashboard table

val header = (for (i <- 0 until numSensors) yield "sensor_" + (i + 1)
.mkString("\t| ")

printin(Cheader)
// loop forever
while (true) {
// send out async queries

af://n2508

for (i <- 0 until numSensors) {
futures(i) = queryState("sensor_" + (i + 1), client)
}
// wait for results
for (i <- 0 until numSensors) {
results(i) = futures(i).get().value()._2
}
// print result
val Tine = results.map(t => f"$t%1.3f").mkString("\t| ")
printin(line)
// wait to send out next queries
Thread.sleep(refreshiInterval)

}

client.shutdownAndwait()
}
def querysState(
key: String,
client: QueryableStateClient)
: CompletableFuture[valueState[(String, Double)]] = {

client
.getkvState[String, VvalueState[(String, Double)], (String, Double)](

JobID. fromHexstring(jobid), // jobid

"maxTemperature", //IREFERT

key, // it

Types.STRING, // Hl[g2sm

new ValueStateDescriptor[(String, Double)](//IREHIATT
""" // state name not relevant here MiERELIRTLI, FHEHEIHZ
Types.TUPLE[(String, Double)]))

BeE EBIMNIRSR

HETLUEEEISAENRES T, (XGRS, WREE XZMEERSR. REFME. 1E51%5s|
(search indexes). EHHFE. HEMIEE., B—XRRXFHAENEFENHUEAMLHN, GRXEE
KOS, FEit, SSHMBEMREE ERIFSAEMENFERGERR.

EIRAIERFNApache FinKBEFAESEHCHEFHEE, MEAKBTFINIFERFKEBNSAEHE
iE. AL, MTERFinkXEFRESIENIERFSRR, RIE—EFTERNINBRFIEREIENEINERSE
SNEIERIEESRE AN IR —EaE03 B E ERRRIAPIZREEN.

8.1 AR —E RIS

BRI R AR — B T T Flink B ERNBIZ5h, R E SRR DS R A — L H bR
HESEERTEIES. BEiER, MAN—SMRERGT =08

o HEESHH

af://n2516
af://n2522

o HiEFEERIRMHAEIEEE
o HEDEERSREHNBRSUEHEFESHS

8.1.1 HEiFE SRR A — B R

AT PN FREFREFER—REPIRS—EIERE, NANE SRR R AR R I & E
B.

o HEMIEERN, BEFERFEEFHEIREINMEIRATHCRERERFIATEFHRIREX
Lo ERRRA.

o MFREIEEERNNITFE:

o BEFNHREIER (SEEXMFTRANEERE)
o Kafka#iiFlR (SFMEEETAES XANENRRE)
o WIREERRERES TAFEMERSDUE, BALNARERHES—IRFIE.

EEMUBEEEN HEERNG, RTLURMES—RH—HIERE, NREFEBHERA—EIEHR
b&, BREAE SR DEERE R bR,

8.1.2 HiEiC i SRR A — B RIS

8.1.2.1 BFiES

RS WTRA—ARRE, ERERET, —XERNESSXER WEEHZWE—HAY, R
IZIRMENREEFM.

EEPHIRFEE
1. BERAE—TBARYNE—NERE, IEXARSI0FFRMITRRE, PALR LD
REEEIXINE +1 %
2. EMESZIRIES IR, —EITENHREEN—IRE, BBATICRMSBIAMEE bugHTEH1{T
K, EBRRZIO—IREL

FEFlinkepBA) E R SR SRR N ARSI SRR IR B IR — IR — E T RIE.

FNEBERGF, RRBNERTZ MERSIIRSEEF BER— MR EFMEIEAEIECENR
HMERRGE. BRAFMNREELRIECEF P REFERRH Tupserti#EEBkeyREHFHE, &

fERtupdate, AFEHinsert) AT LURIERFE, EANT—MERRFKR, SIKIENSIE, &

LIRS E—k-VAT,

BERS:

af://n2533
af://n2551
af://n2553

1. 2358, BB LAY —% ("sensor_1", 100.0) , AEXZICEHENT BEFER
7.

2. BREANZE, RETHIE, AARKSHEHESE —MYER, SI&EN, HELCEA
HT—%% ("sensor_1", 100.0) , AEXFZICREEENTREFHERSR.

3. (BRFEEZE, EAupsertiREREEFM, 1AM ("sensor_1", 100.0) SEAN—%
("sensor_1", 100.0) XE{EFERFKN, S —HFRY.

4. 181, FAIRINRIE T B —REI—E

8.1.2.2 H3HE

B M TIIRIIRER—XN—BMSERESHES. XENEARERRGIBEA T E—ATh
STERZ AN KIEEINERRSE.

HHTESFMES, ESUESHEERER, EEFRESREFMLINRR, AEASHIIKETEFH
.

Flinksh PSS AR DS

e write-ahead-log (WAL)EUEC
* FMEARZR(2PCOEHREIC

8.1.2.2.1 WAL

o WALEHEICKFIESEM RBEAIEFRS, A ERENE [RxliEHEBS el IRERLIND
o WALBRMRE, SJURNIHHIRERSIMIRS (RARSREFEREFIRETRY)
o BR, EARERMH100%8—EIERIE, FEEIMNTMAIPRESK/N.

8.1.2.2.2 2PC

o 2PCHRCREINBRFIRUITSAIZH.

s MTFHMIER, 2PCHURELCEMINBRFEN—INFS, FRAMERKEINCRENIIZES.
o IEWEINERTRRBHE, SRRES.

o 2PCHIMYUKIRTFFIinkEL BRI E A,

o KMERARFTILUEABMIESNIES
o FiEEFESXTHBEMIESMIIMobManager KB LIEERE(IHNRTIRE
o ffiskE)JobManagerfItSE REINAEHERIRRZEENES.

TRER 7 AEREAESIERSE DEEZRRAVER, SRRMH—EERE

af://n2581
af://n2594
af://n2603

iR
i
iC
=M —
#BiC =
WALEHE =z %
iC
2PCHiRE e
iC =
8.2 AEEERS

AEEHIER

N
YN

B —XEERETRETS, SERIERNA—E, SEkERE,
ARSI —IR)

ED—IR(FE 00% RS —IRIRIE)

FEHE—IR

Apache Flinki{ft T SR BIERRRK NS MBRRIEEEIEI D SFI MR A B NEIE.

o {FKafkaiXtFAHEBIFISHBSEE LAIINBEER
o MEEI. XHRES. RERS. JEERFEENAIINERC

AT ENAPERXEERRS, (FREENARBINAIZIE B A,

8.2.1 Apache Kafka &iBiEEiEse

B BKafka

e Apache KafkaB— /Mo inibEES.,
o BHZOR— I RHREB-TIGERRR, ZERG ZHTEA(ngest)fIoK(distribute)5

.

o Kafka{GBHRARIFMBRIER.
o FME—TFEHHE(event log), BIRIEEHIRFF.
o BAITLBEBRBABIBR, XEDXDHE—TERT.
o BAFFRIEXRFENSE—kafkafEANARRSD KIEEENMEHBEFRIE. Kafkafts3 EAPisEEY

BT AIBIEE (offset),

Flink KafkaiZEiz28n] LAFHTIERSEER.

o BNMMIEREFESTLUM—NESAI KiZE.
o {E55 RIFE O XIZSEIEERE, FREICRIREEEET.
o NEPEHRER, (RBERINL, ESREIRERRBEIZDEMR.

El8-1 823 7 EERE FES DD XAIER

af://n2644
af://n2655

Partition Offset
Partition 1

Source 1

Partition 2

Partition 3
Partition 4

Partition 5

Figure 8-1. Read offsets of Kafka topic partitions

THEHEBNHEIE—KafkadiEREZ=s

val properties = new Properties()
properties.setProperty("bootstrap.servers"”, "localhost:9092")
properties.setProperty("group.id", "test")
val stream: DataStream[String] = env.addSource(
new FlinkkafkaConsumer[String](

"topic", // LT

new Simplestringschema(), // /&4t

properties)) // W& Z#

8.2.2 Apache Kafka $fEiCi%i%ss

TEHEBNHEE—KafkaflE DEizes

val stream: DataStream[String] = ...
val myProducer = new FlinkkafkaProducer[String](

"localhost:9092", // brokerfkss a5
"topic", // H4ur3E

new SimpleStringSchema) // /74lik
stream.addsink(myProducer) // ¥ & NEHEIL

af://n2688

8.2.2.1 Kafka#iEiCHZE L —IR(REE

Kafka# & CIELA T REERRRIER MEEED—IRIRILE:

* FlinkftEERNEIZFFER

» FrEHIEREHEESR

o IRBAKRMEY, HECERSFEMHRE (XETLULNBAEMARRE)

s HERZMNERZE, HIRECEERESFE Kafka BIMERTINCREEBE AT,

8.2.2.2 Kafka#iEiCAYFETR— IR IREE

KafkasZisHs31ES, FELFlinkAIKafkadE ChRESIRABHE—RAI—EILRIE. (ERH—IRIRER
HEENA#HES.2.2. 1589 L %M.

FlinkKafkaProducerf@ft T —MiE SemanticSEEIMIERE, IZHERET LAEHETE CIRHAT—EL
HRIERS!, ZECERTEINT:

e Semantic.NONE: IR EA—EMRIE——ICRegeaELTHZRXEAN
e Semantic. AT_LEAST_ONCE: EM—IXFRE, iIERA2EX, BOfEsES. XEWARE.
e Semantic.EXACTLY_ONCE: ¥Bif—IX{FiiE

8.2.2.3 CUSTOM PARTITIONING AND WRITING MESSAGE TIMESTAMPS

HEKafkaERSNHRRT, Flink Kafka#iiEREFES T LISFEZSNETENH DX,
o (RATLUBITIRMH— B E X AIFlinkKafkaPartitionerskizHIEEEIE M XAIHHTT .
o BUABRT, FlinkiEE MESMETEI— M Kaftkap X, BEiEk, BHE—MESAHNEICRE
BENER— K.

BT EREEEIC LRY setwriteTimestampTokafka(true) , AJLUGICRAYEHAIAES AKafka,

8.2.3 X RGERFIEEE

NHRGEEATURHEMLASFEAEEE. ARG, BB F AN EEFRY
SuEERISUEREE . B SRR HEII(@IApache ParquetatApache ORCHBSES, XHRFAALL
Bt ASITERSIZ@NApache Hive, Apache ImpalagiPresto)iRss. Ht, MHRFEHERT E
£ R IR RN R .

Apache FlinkRE T — " 4HEUERERS:, CXIFEE, AL hIEURERAEIERBNZIN
A, 5, BERSIFEMRBNHERS, LN RS, HDFS, S3FE,

af://n2693
af://n2706
af://n2719
af://n2730

NHRGEIERIEIET N T

val lineReader = new TextInputFormat(null)
val lineStream: DataStream[String] = env.readFile[string](

TineReader, // The FileInputFormat SCfFHIAMSZ, FileInputFormat
2

"hdfs:///path/to/my/data", // The path to read %

FileProcessingMode.PROCESS_CONTINUOUSLY, // The processing mode AbFEiZ

30000L) // The monitoring interval in ms 3331 RN A]

FileProcessingMode2 BtRESIRANEEETC, BN TRFuERE

e TEPROCESS ONCEWEZINT, ZH{EIBRzhFEENAAILECAISART, SEEERRREIE—IX.
e 7EPROCESS_CONTINUOUSLYH, SERIMIEREVIGRIEAMRZE), HiFEaEBEifiiEse
X4,

8.2.4 X ZR BRI LS

BERERBAXMR—MELNER. BT ASHNAREE A RETAEERXG, FRRNAE
THIERIK, EtEiRCEZRERE SR RESREFMEI = 4.

SREU TR, X RREIECEESR T LN AR AR AR — IR RS

1. NFEFERE RS
2. B EIERE > FFEE

TEEENIEIE— NG RREIE LS

val input: DataStream[String] = ..
val sink: StreamingFileSink[String] = StreamingFileSink
.forrowFormat (
new Path("/base/path"), //#iliiiz
new SimpleStringEncoder[String] ("UTF-8")) //%il#s
.buildQO
input.addsink(sink)

RIS D RNBID I=RK
o HiERMHSAHZSME
o BRICRBEWDEE—ME+H
o B MEHMMEMERE TH— I FIEE

o MBRBERMIERE, FlinkiRESAHLEMNBIS ERoELESNE—MET,
o BMEPEES/ M partX¥

o F M bucketi R TR AEZ MpartXy

o XLpartX{HMEIECEFHISMESHEMEA.

o 4, BNMHTESTBEBHSEIRS N partSE.

af://n2746

0 IXLLSHASIERRIZ: [base-path]/[bucket-path]/part-[task-idx]-[id]

o fitn, EAHEERS /johndoe/demo/ , HIRIUGRIZ/I part , NEETE /johndoe/demo/2018-
07-22-17/part-4-8 $8[[12018F7H22 3 NS AUX MEMN(/2018-07-22-17/), HEEANMEIL
ESHENRIEEENI(/part-4-8),

StreamingFileSinkiZfHt 7RIS A4HRISIET: {T9RESFIHEE4RED.

o EITRISEINP, BMCREW RMRIBAEENE— M part>X 4., 1B
StreamingFilesink.forRowFormat() 5 it 2EA{TIRIGED,

o AHERIDIEIH, SHRICRE—ERBATENE— M part> ., FHiTEH
StreamingFilesink.forBulkFormat() J5i&F 2 EREER

8.2.5 Apache Cassandra ${E;iCiEiE=s

Apache Cassandra2—fa {40y, BURNFIREFHEIEERZ.

o CassandralG&UEEEENHE SN EERIFIFTER A1 TZR(Cassandra models datasets as tables
of rows that consist of multiple typed columns.),

o AL NEZMIENRER) TR, BT LABTEFRlE—IirR.

e Cassandrafgfit 7 Cassandra&ifiE5(CQL), XE@—MRUsqliNiES, AT ESICRUKEIE.
&AM BRETREXT SR,

FlinkAYCassandraiEizes 20 LIRS IR—IRIRER

o CassandrafVEiEEARFER(K-VILH), Fre5RICassandrafJiR{EEMERupsertia (B
update, i&BHinsert), Fltt, EFCassandrafIEIELCENREERFN
o SitERY, AT ERMIERSEHBIEEARA—E, CassandraiEZesn LB S EFFRWALIE.

TEZMF

BYcEN — M Cassandrazkasts

// Bl
CREATE KEYSPACE IF NOT EXISTS example
WITH replication = {'class': 'SimpleStrategy', 'replication_factor': '1'};
// BlgEE
CREATE TABLE IF NOT EXISTS example.sensors (
sensorId VARCHAR,
temperature FLOAT,
PRIMARY KEY(sensorId)
);

THEERIAEtuple, case classZFZREIE N\ Cassandra

af://n2792

val readings: DataStream[(String, Float)] = 777
// ARG S
val sinkBuilder: cCassandraSinkBuilder[(String, Float)] =
CassandraSink.addsink(readings)
// g
sinkBuilder
.setHost("localhost")
//CQL inserti&fy)
.setQuery("INSERT INTO example.sensors(sensorId, temperature) VALUES (?, ?);")
.buildQO

e E\tuple, case classEIEEEIEECQL INSERTEIA.

o IR CIEER M IPreparedStatement, Fi&tupledlcase classHIFEREEIRA
PreparedStatement/fy£44,

o FEREHMBSRISHN, F—MERERAE—SH.

THEHBRRIMIEPOJOE ACassandra

val readings: DataStream[SensorReading] = 777
CassandraSink.addsink(readings)
.setHost("localhost™)

.buildQO
@Table(keyspace = "example", name = "sensors')
class SensorReadings(

@column(name = "sensorid") var id: String,

@column(name "temperature") var temp: Float) {

def thisQ = {
0

this("", 0.0)

def setId(id: string): Unit = this.id = id
def getId: String = id

def setTemp(temp: Float): Unit = this.temp = temp
def getTemp: Float = temp

o FEEEILEMERMETPO)O=EREICassandraZl)

8.3 SLIMBEE X EEiFEREL

DataStream AP TAMEOREENXEIEREESS, X MEOEEHEMAIRIchFunctionifigks:

o SourceFunction I FIEHTIEURRIEESS
e ParallelSourceFunction BF 5 RNEITSMESHEURRIERES

XA MEORRISE—R, AR

af://n2832

=8 ik

void

run()73i=RERPUTERRAISEHHEAN TR, FlinkaF—MEIINEE,
REEXNEAEFERrun(73E—X,

run(SourceContext<T>

ctx)

void cancel() TERLIEEMHEN

TEE—MEROAIT, TelE—MIEAIMOLEILong maxValuelIEE L SIRTERE
class CountSource extends SourceFunction[Long] {
var isRunning: Boolean = true

// SEBREE S TAE
override def run(ctx: SourceFunction.SourceContext[Long]): Unit = {

var cnt: Long = -1

whiTle (isRunning && cnt < Long.Maxvalue) {
// AW ++
cnt += 1
ctx.collect(cnt)

3
3

// ZabE R
override def cancel(): Unit = isRunning = false

8.3.1 AJEEREHEIFEEY

Flink REEfE SRR R RR S U N\ SRR 7 BEfR (LS — BRI,

o WMRINERERFRM T ENRBENEERBENAP, NEIEREFILAZRIBAEIE.

o UM XHERF. CREUUGRRBE, SRR REIENSEERIseekTTiE,

o FLtiN: Apache Kafka, EAEERIENSXRMREE, FILURES XANERE.,

* — I RflRweb socket, EM\WEERFIZEENE, HAEVAIEFRZMCIEIE EWERTFE
i

ZIFEMPNSIEREFESHERNG BS

o EARNERN, HEREFERAMIESANENREE.
o HIEIRSR, HEREFENGTINERIKERBESAH,

NEREIRRE T EZISEM, WHEESLHCheckpointedFunctioniZzM, BRfIFINT

// AIEEMSourceFunction

af://n2856

class ReplayableCountSource extends SourceFunction[Long] with
CheckpointedFunction {

var isRunning: Boolean = true

var cnt: Long = _

// Rkt offsetF oINS

var offsetState: ListState[Long] = _

// LRI TAE

override def run(ctx: SourceFunction.SourceContext[Long]): Unit = {

whiTle (isRunning && cnt < Long.Maxvalue) {
/ /B, AR R PR i R AR I BB A2, BRARNESEEAT 1R b
ctx.getCheckpointLock.synchronized {
// increment cnt
cnt += 1
ctx.collect(cnt)

override def cancel(): Unit = isRunning = false

// R RN, XA T R R AR
override def snapshotState(snapshotCtx: FunctionSnapshotContext): Unit = {
// remove previous cnt
offsetsState.clear()
// add current cnt
offsetState.add(cnt)

// WA AR ST I 4 8 FH X AN T ik
override def initializeState(initCtx: FunctionInitializationContext): Unit = {
// obtain operator list state to store the current cnt
val desc = new ListStateDescriptor[Long] ("offset", classof[Long])
offsetState = initCtx.getOperatorStateStore.getListState(desc)
// MR s ST AT e R
// initialize cnt variable from the checkpoint
val it = offsetState.get()
cnt = if (null == it || !it.iterator().hasNext) {
-1L
} else {
it.iterator().next()

8.3.2 BETRAL. RIEIBER KL

DataStream AP IR 7 Ffh 75 Uk 52 B RS EIBEF N A Rk 7K (1% .

o FIEIBANKAIZAT LARE AT TimestampAssigner S ECFI4ERL
o AYEIEFNKAIZBET LA sourceFunction 2 ECFI4ERK,

af://n2879

SourceFunctionfi sourcecContext XS T O EKAIZAIRT BB £

@Pub1icEvolving
void collectwithTimestamp(T element, Tong timestamp);

@PublicEvolving
void emitwatermark(watermark mark);

A HEAMUBESETF(ES HITLIE B partitiondT, {5 sourceFunction SRA KL {ER
BYHAY TimestampAssigner BBiF, BEARRERS.

8.4 LM B E UL AL

DataStream AP T SinkFunctioniZ O3k BENEHIECKEL. SinkFunctioniZORRE— A%

void invoke(IN value, Context, ctx)

TEREIERT—MEEBAISInkFunction, BIEREESEHBEANEEF.

// write the sensor readings to a socket

readings.addSink(new SimpleSocketSink("localhost", 9191))

// set parallelism to 1 because only one thread can write to a socket
.setParallelism(1)

* Writes a stream of [[SensorReading]] to a socket.
7':/
class SimpleSocketSink(val host: String, val port: Int)
extends RichSinkFunction[SensorReading] {

var socket: Socket =

var writer: PrintStream = _

/ /% B socketi#EEMwriter

override def open(config: Configuration): uUnit = {
// open socket and writer
socket = new Socket(InetAddress.getByName(host), port)
writer = new PrintStream(socket.getOutputStream)

}

//HwriterS5 A2k 4
override def invoke(
value: SensorReading,
ctx: SinkFunction.Context[_]): uUnit = {
// write sensor reading to socket
writer.printin(value.toString)
writer.flush(Q

af://n2893

/ /R

override def close(): unit = {
// close writer and socket
writer.close()
socket.close()

AT LIREIRER—IRRE, SRR ERFISITRS, NEH(EEXER

8.4.1 FEFHEURE k=S

MBINBCRAHRINTANEE, SinkFunctioniZOt AT RS M HE L EZS
o HERUIEEBEIEMNR, LR LIVTESEN.

o WFITEE/MEESINE LMW FISRENNERER, Bl EEs0DIEo
R[N
o IMBERZIFIHEER, GIIXAREIEERFALULERTEE M (update ... where sensor_id =
XxX) BB AE T LAR B key B3

TEGIFER T ISR ER— N EEAISInkFunction, 1ZEREUGEHES N DBCEIRRE.

class DerbyUpsertSink extends RichSinkFunction[SensorReading] {

var conn: Connection = _
var insertStmt: PreparedStatement
var updateStmt: PreparedStatement

// Witk g tFinsertStmtHlupdateStmt
override def open(parameters: Configuration): Unit = {
// connect to embedded in-memory Derby
val props = new Properties()
conn = DriverManager.getConnection("jdbc:derby:memory:flinkExample", props)
// prepare insert and update statements
insertStmt = conn.prepareStatement(
"INSERT INTO Temperatures (sensor, temp) VALUES (?, ?)'")
updateStmt = conn.prepareStatement(
"UPDATE Temperatures SET temp = ? WHERE sensor = ?")

// SEBREIALERRR L e s il R MU
override def invoke(r: SensorReading, context: Context[_]): Unit = {
// set parameters for update statement and execute it
updatestmt.setbDouble(1l, r.temperature)
updateStmt.setString(2, r.id)
updatestmt.execute()
// execute insert statement if update statement did not update any row

af://n2903

if (updatestmt.getUpdateCount == 0) {
// set parameters for insert statement
insertStmt.setString(1l, r.id)
insertStmt.setbouble(2, r.temperature)
// execute insert statement
insertStmt.execute()

}

}

// KW KilstmtFconn

override def close(): Unit = {
insertstmt.close()
updatestmt.close()
conn.close()

3
}

8.4.2 SRS MEURE DEERS

HTEUESEEUECAISEI, FlinkfDataStream APHEM T/ MENR, BTLUEIT LRI LEEMT SksCHT
BENFIELCEF, B MENRESSSIN 7 CheckpointListeneriZz3E) obManager K BRI E R E T
BRAOESN

¢ GenericWriteAheadSinkiZiREFEBMIEREARNMEREAHEIIMNBRARICR, HiEE(]
FHEESIELCEFESHNEFRSYH. HESEERERTKBANN, BREETKIIBMMEER
[AEANANERBE NN RS,

e TwoPhaseCommitSinkFunctiontZiRFIAT/MBICEANESISE. NTFEMER, BEN
—NFES, HEXMEERERRNNEHEEANRIXANESF,

8.4.2.1 GenericWriteAheadSink(WAL)

GenericWriteAheadSinkE9 T/EAA0 T :

o EEATEEEEIINICRAIN(@append) EfE AN ERMES BR(segmented)iJwrite ahead log(WAL)
&,

s BXREIELCEFRIERERSREGT, BEFE— \Hilhsection, FELITABICRIEMNEFH
section,

o WALEAREFIREHEFE, JSERQERN, WALRKREESITZFE.

o HTFWALRILIEHIIMEIRE, FEHASELEHTER,

L GenericWriteAheadSinkIBIXF ETHIEE RANERIRT, BEBWALSXIRLIXMEE mAdsectionsh
FrEIERARIELEINERER S,

LFFEICREPEEINA S, GenericWriteAheadSinkiSERBMRRZIBENAMEE R, KBRS @I

MERIERL,

af://n2919
af://n2929

o B4, HBELKRAFME X MIBRDRER 7 "XEIRRER.

o EUR, BMWALFRRHERXSRAIsectionFEE/EHR.

o IR REEEFFMEEFINSH. Bk, GenericWriteAheadSinkikiiiF—MRA
CheckpointCommitterfI BN B EFEIIEKIRZIER.

THEEEWIFIAGenericWriteAheadSinkKSELII— M NE S MEUR DiEEESS

avgTemp.transform(
"writeAheadsSink",
new StdoutwriteAheadsink)
// enforce sequential writing
.setParallelism(1)
ik
* Write-ahead sink that prints to standard out and commits checkpoints to the
local file system.
)

// GenericwriteAheadsinkili S/ EAEN =424
// 1 HATAEERAE B checkpointCommitter
// 2 TypeSerializer HikF¥ik
// 3 f%id
class stdoutwriteAheadSink extends GenericWriteAheadSink[(String, Double)](

// CheckpointCommitter that commits checkpoints to the local file system

new FileCheckpointCommitter(System.getProperty("java.io.tmpdir")),

// Serializer for records

createTypeInformation[(String, Double)].createSerializer(new
ExecutioncConfig),

// Random JobID used by the CheckpointCommitter

UUID.randomuUID.toString) {

// FHABRMFER LI sendvalues /72
override def sendvalues(
readings: Iterable[(String, Double)],
checkpointid: Long,
timestamp: Long): Boolean = {

for (r <- readings.asScala) {
// write record to standard out ¥ A\ S N BbRitEs A Gl zé A 2B 1)
// BATH AT LR Bl stdout i A R Il A Dl 5
printTn(r)

}

true

WRIAMA, GenericWriteAheadSinkARBER{100%AETHR—R—EIERIE, BRMENERSSHICHE
N Tk

o TEFEESSiEITsendValues() iR REE.

o IXRf, BfsectionFBRICREENTINBRFEZBRIREEA.
o REHRTHRERMERRER, IRER, HIECEBREANXPsectionFHIFTHICR.
o NMSHICRBIRKIE.

FrEICREWIERSA, sendValues(5i&iREtrue; {BE, EFERAM
CheckpointerCommitterZBikM, sk&ECheckpointerCommitterKgEiRMEE =, X, &
WEHAE, RFEXRANIX checkpointRINERREE, FHBIRBEANIX sectiondhHIFFHEICR,

8.4.2.1 TwoPhaseCommitSinkFunction(2PC)

TwoPhaseCommitSinkFunctionZiX#EsCI2 PCHNYaY,

EHIRCAIMBLRFARHENSE—MERZE, BEINBLESK LBSI—1ES.

X2Z EWEINFBICREBBENEIXNESH,
HJobManagerBRI—MEBRHELIBRERMNMIESSIEFEE, 2PCHYATREMERFFA.
H—REFRUERERDRMAN, EniclEFEREL B SRS, HE<ikz EMmjobManager
BIXHAER.

HHBLEFESEEEINERS RGN, EHEEFEESECINRT, ERTFERRES, H
#E5ERZ feM)obManager ZiEiRIAER.
JobManagerlZIFIFIAB RS T 2PCHMYAYERIRE, BIRICIESIAHEREEIRIZEHS, EH
YRR EMEIR CESEHEA THRESR. IR CIESSBFB— M SRS, B2
IERBANEIX MBS,

HJobManager MEREIES LIBNEIMGIAERNT, SHERERKEM RiEAMEITIHENE
%, BRI R F2PCHMYAcommitdn s,

LR CESIRIBMET, CRTNERIRAES.

LA TSR T BINES, 2PCHMYANERHEN T .

ZSCHR2PCHY, BFBEIMBCRITHE —LEK

HNERCRF L TURR TS TS,

ERERERE, FSLFIFHRZEERE.
FESUMEIINENERHREMARERE. TIKERBNERT, XOUREEE—LaE. NRE
WRFRAESGINEBI XA TES), RERAIEIEGER.
HMEBCRG BB IR IE R MR IREES.
RRXESUARTFRE——IINPLRRNIZEE IEEESCRRER, SEEERTLNIBER
£

TESEAIS2PCIERE— MRS L

class TransactionalFileSink(val targetPath: String, val tempPath: String)

// IN => (String, Double) HiAidzt(K2m

// TXT => String HERRFFHISEA

// CONTEXT => Void EFIHEM, voidfEAFE LT

extends TwoPhaseCommitSinkFunction[(String, Double), String, Void](
// ks
createTypeInformation[String].createSerializer(new ExecutionConfig),
// FEEtEE
createTypeInformation[Void].createSerializer(new ExecutionConfig)) {

var transactionwriter: Bufferedwriter = _

/7':7':
* T TR HT ST M R A I S
-.‘:/

af://n2970

override def beginTransaction(): String = {

// path of transaction file is constructed from current time and task index

val timeNow = LocalDateTime.now(zZoneId.of("uUTC™))
.format(DateTimeFormatter.ISO_LOCAL_DATE_TIME)

val taskIdx = this.getRuntimeContext.getIndex0fThisSubtask

// X4 = B+ FE5d

val transactionFile = s"$timeNow-$taskIdx"

// O Rwrdter

val tFilePath = Paths.get(s"$tempPath/$transactionFile™)
Files.createFile(tFilePath)

this.transactionwriter = Files.newBufferedwriter(tFilePath)
printin(s"Creating Transaction File: $tFilePath")

[/ XAFBEARE]L, AN KR IRTE

transactionFile

/** Write record into the current transaction file. */
/% BB NBI AT SO/
override def invoke(transaction: String, value: (String, Double), context:
Context[_]): unit = {
transactionwriter.write(value.toString)
transactionwriter.write('\n')

/** Flush and close the current transaction file. */
override def preCommit(transaction: String): Unit = {
transactionwriter.flush()
transactionwriter.close()

/** Commit a transaction by moving the pre-committed transaction file
* to the target directory.
*/
/%% IR R I SO RS Bh 3 H AR BRI R IR AL H 5 */
override def commit(transaction: String): Unit = {
val tFilePath = Paths.get(s"$tempPath/$transaction")
// check if the file exists to ensure that the commit is idempotent.
if (Files.exists(tFilePath)) {
val cFilepath = Paths.get(s"$targetPath/$transaction")
Files.move(tFilePath, cFilePath)

/** Aborts a transaction by deleting the transaction file. */
/%% IR I I S N B R G P 2 5% */
override def abort(transaction: String): Unit = {
val tFilePath = Paths.get(s"$tempPath/$transaction")
if (Files.exists(tFilePath)) {
Files.delete(tFilePath)

8.5 RBAIMERRE S

BRT R (ngestEAR HemitEiER< /b, BEETESEFREREERESHRRES—FES
SMERTEERERENENSR. il BRI SONERS, ChRECERFETRETETIXIN S
FFHREERFE SREit.

WFIXEGE, REIENAZEEIM— M MapFunction, EASMECREAIINBRS, SFEiaRELE
B, FECRE, AREER, BAXMSIREIZI, BFEE—) TE 0 IHIMNPRFRITMERE
SIEMNEFAIER(—MER/MIRSE KA NNEEEE), TMapFunctioniE KRS ERTFSSERE
%0

FlinkiZ2 7 AsyncFunctionRiEimizl/ OiFBAYZER, AsyncFunctionFH&ithZ XS N EiFHRE
AIET(IREEE.

THEIREZE AsyncFunction BYRES

trait AsyncFunction[IN, OUT] extends Function {
// input: #HAidE
// ResultFuture[oUT]: A Tiz[AIe&¥as R 52 Futurest R (A T AR [Fl— AN 575
def asyncInvoke(input: IN, resultFuture: ResultFuture[OUT]): Unit

}

TERERAMIEER AsyncFunction SR AEIHX R BEIEE(X EERADerbyEiEZE)

val readings: DataStream[SensorReading] = ??77
val sensorLocations: DataStream[(String, String)] =
AsyncDataStream
.orderedwait(

readings,

new DerbyAsyncFunction,

5, Timeunit.SECONDS, // timeout requests after 5 seconds

100) // at most 100 concurrent requests
[/ ..

class DerbyAsyncFunction extends AsyncFunction[SensorReading, (String, String)]

{

// caching execution context used to handle the query threads
private Tazy val cachingPoolExecCtx =
ExecutionContext.fromExecutor (Executors.newCachedThreadrPool())
// FTREERFuturef K 4511
private Tazy val directExecCtx =
ExecutionContext.fromeExecutor(
org.apache.flink.runtime.concurrent.Executors.directExecutor())

/** Executes JDBC query in a thread and handles the resulting Future
* with an asynchronous callback. */
override def asyncInvoke(

reading: SensorReading,

af://n3009

resultFuture: ResultFuture[(String, String)]): Unit = {
val sensor = reading.id

// Bl#E—"Future, MEFEE IR roomfs &
val room: Future[String] = Future {
// Creating a new connection and statement for each record.
// Note: This is NOT best practice!
// Connections and prepared statements should be cached.
val conn = DriverManager
.getConnection("jdbc:derby:memory:flinkExample", new Properties())
val query = conn.createStatement()

// submit query and wait for result. this is a synchronous call.
val result = query.executeQuery(
S"SELECT room FROM SensorLocations WHERE sensor = '$sensor'")

// get room if there is one

val room = if (result.next()) {
result.getsString(l)

} else {
"UNKNOWN ROOM"

// close resultset, statement, and connection
result.close()

query.close()

conn.close()

// sleep to simulate (very) slow requests
Thread.sTeep(2000L)

// return room
room
}(cachingPoolExecCtx) // H - AZHUE MAREE

// ZiroomixX N FutureE Mt — =l
room.onComplete {
case Success(r) => resultFuture.complete(Seq((sensor, r)))
case Failure(e) => resultFuture.completeExceptionally(e)
}(directExecCtx)

e asyncinvoke()/5iAE% T BEZE LAY DBCEIA

o XUEDBCEIEIEIICachedThreadPoolfT,

e Future[Stringlix[A] DBCEIARVER.,

o BfE, BAAAFuturedIR (iR EEABAroomER)onComplete(BlE, FHIGEIDERIER
#4ResultFuture handler,

o IGEAER(EHBLSResultFuture handler2MDirectExecutorfhIBaY,

BE5—IRAIR, asyncInvoke FiZdBSHMEFRECEEXE, #HEHRTABN. INIECER
EEART FutureXIg kA HHEIKEEBK,

	FlinkNote
	第1章 状态化流处理概述
	1.1 传统数据处理架构
	1.1.1 事务型处理
	1.1.2 分析型处理

	1.2 状态化流处理
	1.2.1 事件驱动型应用
	1.2.2 数据管道
	1.2.3 流式分析

	1.3 开源流处理的演变
	1.4 Flink 快览

	第2章 流处理基础
	2.1 Dataflow编程概述
	2.1.1 Dataflow图
	2.1.2 数据并行和任务并行
	2.1.3 数据交换策略

	2.2 并行流处理
	2.2.1 延迟和吞吐
	2.2.1.1 延迟
	2.2.1.2 吞吐
	2.2.1.3 延迟与吞吐

	2.2.2 数据流上的操作
	2.2.2.1 数据接入和数据输出
	2.2.2.2 转换操作
	2.2.2.3 滚动聚合
	2.2.2.4 窗口操作
	2.2.2.4.1 滚动窗口
	2.2.2.4.2 滑动窗口
	2.2.2.4.3 会话窗口

	2.3 时间语义
	2.3.2 处理时间
	2.3.3 事件时间
	2.3.4 水位线
	2.3.5 处理时间与事件时间

	2.4 状态和一致性模型
	2.4.1 任务故障
	2.4.2 结果保障
	2.4.2.1 至多一次(AT-MOST-ONCE)
	2.4.2.2 至少一次(AT-LEAST-ONCE)
	2.4.2.3 精确一次(EXACTLY-ONCE)
	2.4.2.4 端到端精确一次(END-TO-END EXACTLY-ONCE)

	第3章 Apache Flink架构
	3.1 系统架构
	3.1.1 搭建Flink所需的组件
	3.1.1.1 JobManager
	3.1.1.2 RecourceManager
	3.1.1.3 TaskManager
	3.1.1.4 Dispatcher
	3.1.1.5 整体架构图

	3.1.2 应用部署
	3.1.2.1 框架模式
	3.1.2.2 库模式

	3.1.3 任务执行
	3.1.4 高可用性设置
	3.1.4.1 TaskManager故障
	3.1.4.2 JobManager故障

	3.2 Flink中的数据传输
	3.2.1 基于信用值的流量控制
	3.2.2 任务链接

	3.3 事件时间处理
	3.3.1 时间戳
	3.3.2 水位线
	3.3.3 水位线传播和事件时间
	3.3.4 时间戳分配和水位线生成

	3.4 状态管理
	3.4.1 算子状态
	3.4.2 键值分区状态
	3.4.3 状态后端
	3.4.4 有状态的算子的扩缩容
	3.4.4.1 带有键值分区状态的算子扩缩容
	3.4.4.2 带有算子列表状态的算子扩缩容
	3.4.4.3 带有算子联合状态的算子扩缩容
	3.4.4.4 带有算子广播状态的算子扩缩容

	3.5 检查点、保存点、状态恢复
	3.5.1 一致性检查点
	3.5.2 从一致性检查点中恢复
	3.5.3 Flink检查点算法
	3.5.4 检查点对性能的影响
	3.5.5 保存点
	3.5.5.1 保存点的使用
	3.5.5.2 从保存点启动应用

	第4章 设置Flink开发环境
	第5章 DataStreamAPI
	5.1 Hello,Flink!
	5.1.1 设置执行环境
	5.1.2 读取输入流
	5.1.3 应用转换(Apply Transformation)
	5.1.4 输出结果
	5.1.5 执行

	5.2 转换操作
	5.2.1 基本转换
	5.2.1.1 Map
	5.2.1.2 Filter
	5.2.1.3 FlatMap

	5.2.2 基于KeyedStream的转换
	5.2.2.1 keyBy
	5.2.2.2 滚动聚合
	5.2.2.3 Reduce

	5.2.3 多流转换
	5.2.3.1 Union
	5.2.3.2 Connect，coMap，coFlatMap
	5.2.3.1 Split和Select

	5.2.4 分发转换

	5.3 设置并行度
	5.4 类型
	5.4.1 支持的数据类型
	5.4.2 为数据类型创建类型信息
	5.4.3 显式提供类型信息

	5.5 定义键和引用字段
	5.5.1 字段位置
	5.5.2 字段表达式
	5.5.3 KeySelector函数

	5.6 实现函数
	5.6.1 函数类
	5.6.2 Lambda函数
	5.6.3 富函数

	5.7 导入外部和Flink依赖

	第6章 基于时间和窗口的算子
	6.1 配置时间特性
	6.1.1 分配时间戳和生成水位线
	6.1.1.1 周期性水位线分配器
	1 assignAscendingTimestamps
	2 BoundedOutOfOrdernessTimestampExtractor

	6.1.1.2 定点水位线分配器

	6.1.2 水位线、延迟及完整性问题

	6.2 处理函数(Process Function)
	6.2.1 TimerService和Timer
	6.2.2 向副输出发送数据（Emitting to Side Outputs）
	6.2.3 CoProcessFunction

	6.3 窗口算子
	6.3.1 定义窗口算子
	6.3.2 内置窗口分配器(Built-in Window Assigners)
	6.3.2.1 滚动窗口(Tumbling windows)
	6.3.2.2 滑动窗口(Sliding windows)
	6.3.2.3 会话窗口(Session windows)

	6.3.3 在窗口上应用函数
	6.3.3.1 ReduceFunction
	6.3.3.2 AggregateFunction
	6.3.3.3 ProcessWindowFunction
	6.3.3.4 增量聚合与ProcessWindowFunction结合使用

	6.3.4 自定义窗口算子
	6.3.4.1 窗口的生命周期
	6.3.4.1.1 何时创建
	6.3.4.1.2 由哪些信息组成
	6.3.4.1.3 何时删除

	6.3.4.2 窗口分配器
	6.3.4.3 触发器
	6.3.4.4 移除器

	6.4 Joining Streams on Time
	6.4.1 Interval Join
	6.4.2 Window Join

	6.5 处理迟到数据
	6.5.1 丢弃迟到事件(Dropping)
	6.5.2 重定向迟到事件(Redirect)
	6.5.3 基于迟到事件更新结果(Update)

	第7章 有状态算子和应用
	7.1 实现有状态函数
	7.1.1 键状态
	7.1.2 算子状态
	7.1.2.1 为什么要把算子状态当作列表来处理呢？

	7.1.3 使用连接广播状态(Using Connected Broadcast State)
	7.1.4 使用CheckpointedFunction接口
	7.1.5 接收检查点完成的通知

	7.2 为有状态的应用开启故障恢复
	7.3 确保有状态应用的可维护性
	7.3.1 指定算子唯一标识
	7.3.2 为使用键状态的算子定义最大并行度

	7.4 有状态应用的性能及鲁棒性
	7.4.1 选择状态后端
	7.4.1.1 MemoryStateBackend(内存式的，易丢但快)
	7.4.1.2 FsStateBackend(本地状态在内存，检查点会持久化)
	7.4.1.3 RocksDBStateBackend（本地持久化，检查点也持久化）

	7.4.2 选择状态原语
	7.4.3 防止状态泄露

	7.5 更新有状态应用
	7.5.1 保持现有状态更新应用
	7.5.2 从应用中删除状态
	7.5.3 修改算子的状态

	7.6 可查询式状态(queryable state)
	7.6.1 可查询式状态服务的架构及启动方式
	7.6.2 对外暴露可查询式状态
	7.6.3 从外部系统查询状态

	第8章 读写外部系统
	8.1 应用的一致性保障
	8.1.1 数据源连接器提供的一致性保障
	8.1.2 数据汇连接器提供的一致性保障
	8.1.2.1 幂等性写
	8.1.2.2 事务性写
	8.1.2.2.1 WAL
	8.1.2.2.2 2PC

	8.2 内置连接器
	8.2.1 Apache Kafka 数据源连接器
	8.2.2 Apache Kafka 数据汇连接器
	8.2.2.1 Kafka数据汇的至少一次保障
	8.2.2.2 Kafka数据汇的精确一次保障
	8.2.2.3 CUSTOM PARTITIONING AND WRITING MESSAGE TIMESTAMPS

	8.2.3 文件系统数据源连接器
	8.2.4 文件系统数据汇连接器
	8.2.5 Apache Cassandra 数据汇连接器

	8.3 实现自定义数据源函数
	8.3.1 可重置的数据源函数
	8.3.2 数据源函数、时间戳及水位线

	8.4 实现自定义数据汇函数
	8.4.1 幂等性数据汇连接器
	8.4.2 事务性数据汇连接器
	8.4.2.1 GenericWriteAheadSink(WAL)
	8.4.2.1 TwoPhaseCommitSinkFunction(2PC)

	8.5 异步访问外部系统

