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Figure 1-5. An event-driven application architecture
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Figure 2-2. A physical dataflow plan for counting hashtags (nodes represent tasks)
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Figure 2-4. A streaming operator with a function that turns each incoming event into a darker
event
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Figure 2-13. Event time correctly places events in a window, reflecting the reality of how
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FHEE— M MRS R. SERESISIMEHTHS XIEHS X, S oREH—MESL
B, ZASHEMEREEINEFNEM, FRENRNEMAEE NIRRT, ZNAERFIE3-19
A7,

Input stream State: stream offset Even numbers  State: sum

! ! b/
—o-o—b Source 1 Sum even | 2

Odd numbers

JobManager@BIREMHERES RE— M HNVFERERRSHEREBINERERTRRE, WE
3-20Ff73.
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Initiate
JobManager |  checkpoint 2

ed

h 4

_oo_> Source 1] 3 | —@)—»[ Sumeven] 2 Sink 1
1
e

h 4

OO 2[4 f—>[ sumodd [s}—~O)—{_sink2

SRR IS REHEE RERR,

1. EEELEGEER, ANRRSRHER ERFIRSHEER, HRETITEFE

2. BB R PR BERE THES.

3. RS RimaERERFRFTF 2 GiE MTaskManager, TaskManager&£g)obManager&ZiXifiAil
2.

4. ERHTORMFZE, SERSRSESNITFRE.

5. (0T~ ERTR

Checkpointed
source state
Acknowledge completion

of task checkpoint 2 JobManager

Remote —»

l X
storage L_T___[T_::---A-A ..... i

—°»°—i—> Source 1 3 —A—b Sum even | 4 * Sink 1 i
Sink2_]

I I

'R I
1 |
I 1

~ QO e[ LA\ [Smosd [1}—Q—{ iz
T

Emitted barrier
for checkpoint 2

HERARHINERDIRAHN BATHES. STHISIREEIFRMMSERP IR/, BHREFFER
BEfEHM LIS RARIRCER. TFFHHE, BHRECEBIL RSB LS
ICR, MR T PRFN LHFISCRERER, SHHENE. SEMBERERENARITER
JHEERNTF, WE3-22f7.



Source continues Buffered

processingafter  record for L"PUE whose l?ar{riier
checkpoint  barrier alignment as not yet arrive
are processed

Checkpoint barrier

arrived at task
—B—MESNENRB LHESKEISRRT, cHaltRSERERE—MEER, HEEERDRT
IBECRFE TFES, WE3-2307R.
Checkpointed eck
task state eckpoint state .
when all input barriers Barrier forwarded
have arrived when all input barriers

have arrived

ERINERSRNRE, ISHTRLEBEEMYCR. ERETMEEMCRZE, IS RENER
BN, E3-2487R 7 RIRIN FRFEFF.



Process buffered
record after barrier

wasemitted

Ba, MERDRAEIAEIEL. SR CRREID SR, SFOETXIERE, REBESREEAN
WER, FEjobManagerfiARIEIZo IR, —ENBIFBESHLE THREREA,
JobManagerB SIS RAREFAMEERICRACTM. E3-2587 riEREAIRE—. WRIFT
&, EFclivRERABTASRERRENF.

(heckpoint 2 completed

s Acknowledge
- checkpoint 2
8

3
8

3.5.4 {2 B R TERERYRZ IR

FinkiREREENRRAFF=E L HINER, MAEFLBEINA. B2, SRIEINNAER
QLEEGEIR, FlinkSCIR 7 —L0i828, AILAERLAM TRARERERIN.

ESERERSENECERINTRET, BHEEE, —MFREERSBRERBASR, RIS
PITERIRENILE, BS—PHEREBRERERTRTEE.
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b, RIS PRI TSR R A EF L EE RIS RS XANER, MEERELE, 8
e —EMHRIEMNSIH—REEREIZE D —R

3.5.5 (R 1F=

FlinkEBIMEMBIRENIREZ ——RFR. R L, RERNEREESHNEREREEHF, Bt
ALBGREREERTE —LEUIMNTEIRINER, Fink A SBiERFRTR, MERERFREXE
FSRERIREFR.

3.5.5.1 (RIF=R9EA

SLE— BB REHERER, HITLUNZEERBIRA. XEENBIIRSIIBHARTR
APRZS, FMIRERRF REIEIETAA.

RERAILIAERSZER

o JLUNRFRESN— I FRERSHNNERER. XEWETLUEE—EihbugZ EINRTFRER
ALAMERRRHITESRNA

ALERRIRYEREE E SR

ALAERREREENAEFATHBRIREE. XEMALUAEMESI RN BB L ERFRIR
BJLARRIF K TR IHEHRIE

3.5.5.2 NMRTFREENRA

EARTHR, HAIEERFinkIENRE R BRI AR AR IR,

—MHEBEPNAEFRESS MRS, el hEAREFRIREES L.

TEERT— BESAHFOREER, SMIFRETRMES. Eh— HFOP-E— 8T
RA(0S-1), B—MEFOP-2/EFE MRES RRAKS-1HIKS-2), HERURFAR, FIEEIRAHE
LI —MSANAFIENIE .
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Keyed state

Taking 3
savepoint

_ [ momm)|:
52 OO00) |

e
Restoring
foma !
savepoint : 0P-1 l&l DD I
I
YOS I_ ___________ :
State name
Operator ID

Operator task Operator state

FERPIRSEIFARBEFRRAFIRESERETER. ZEF RIS REEBBRTR
APRSEGRIRGIZIN RGPS L. SMNREREMNEIEFR, FlinkGRFSEIREH D K4A1HE
REFANES.

RNARETIEN, RABEEFRAFRSENLTIRSEIFTEEBAEIER. FABIT,
Finkea ElE—RIEFRRAT. BR, EFinRNEETHEIEEFAWRRAFERRT. X, Rt
FNEFIRRAFFRETEN, BATEFNEFESTN. B, HIBENENHRMENFNSTE—R
IR, MAEERFFlinkBIBARIE,

45 IBFlinkFRFIS

FlinkG—MESFFARHMERIHITIER . MEFM execute O SiEWIEMAR, SER—MNVMELUEZ
ZA2RHEE—1N obManager&f2fl— NTaskManager£f2, XHF, BEANFlinkRASLAS&ERS
RER—NVMEEFHIT. ZE T BFEIDERRITFlinkBIF.

BT RIVMPITIRIAIEE, (RETLMGR AR R —HEI DESRYEIFlink A,

Z855 DataStreamAPI

RENEB TFlinkAYDataStream APIRIEREENR. FAVEE~EBIFlinkiRRBERIISEFIAEME, 1T
IBFIinkAURBERFIOSHFAIEIESEE, HNAERIEIR(data transformation)f193 Xk (partitioning
transformation), ERX—E, {FEMNEIASSI— M EEEFIEERIRAIERBIER.
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5.1 Hello,Flink!

BRE—MERIGIF TR

/¥% E N —/~case classlElfE B3 BRI R A >/
/** Case class to hold the SensorReading data. */
case class SensorReading(id: String, timestamp: Long, temperature: Double)

/%% E R object*/
/** Object that defines the DataStream program in the main() method */
object AverageSensorReadings {

/** main() defines and executes the DataStream program */
def main(args: Array[string]) {

[/ BERAPATIIEL
// set up the streaming execution environment
val env = StreamExecutionEnvironment.getExecutionEnvironment

// TE R A A S (]
// use event time for the application
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

// BRI
// configure watermark interval
env.getConfig.setAutowatermarkInterval (1000L)

// MR il #Datastream[SensorReading] 5 %
// ingest sensor stream
val sensorbData: DataStream[SensorReading] = env
// IfEELESource
// SensorSource generates random temperature readings
.addsource(new SensorSource)
// B RAIK L
// assign timestamps and watermarks which are required for event time
.assignTimestampsAndwatermarks(new SensorTimeAssigner)

val avgTemp: DataStream[SensorReading] = sensorData
/7 KIR AR PRI P T iy 4 R
// convert Fahrenheit to Celsius using an inlined map function
.map( r =>
SensorReading(r.id, r.timestamp, (r.temperature - 32) * (5.0 / 9.0)) )
// WRHEAL RS AR H B
// organize stream by sensorId
.keyBy(_.id)
// FERAR IR E 1 44
// group readings in 1 second windows
.timewindow(Time.seconds(1))
// G P B E CRECRTHE T S5R E
// compute average temperature using a user-defined function
.apply(new TemperatureAverager)

// FTENEIE=H &
// print result stream to standard out
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avgTemp.print()

// FRUEHAT A
// execute application
env.execute("Compute average sensor temperature')

E— A EERFlinkiR R R LA T LS

1. REBHTIME

2. NEUEIRISEE— K25

3. B — R IR SL I R B S

4. EEMHIEEREHE — N SN R+
5. WTRER

5.1.1 88N TIHIE

Fink IR EMAIE—HSRIRECHNGTINE. ITMERHEEFEESINRE LETAEESE
¥ Li51T. 1EDataStream APIR, N EERERFEIHITINER streamExecutionEnvi ronment 3.

BRMIRERTIMERIS T

1. JAFBEH getexecutionEnvironment O FAKIEERTIFR. WA ARBIAMEIREAE, B
ARFRARZAGENETY, NREEEETEERMNEREFiIRERZAE, NREIZERT
INE, BN, BIREI—AHERE,

2. BATLUEIY createxxx FiEREBiIREHITIAE, BEARIBIOT

// BB AR PAT ISR

val TocalEnv = StreamExecutionEnvironment.createLocalEnvironment()

// B TR R R PATIAEE

val remoteEnv = StreamExecutionEnvironment.createRemoteEnvironment
"host", // JobManagerf] T84
1234, // JobManager(#ji 15
"path/to/jarFile.jar" // FEfL%iF|IobManagerff]JARE

PITIIRIARM T RSEERIR, than

1. 18)J env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) IEEXMFINBE
FISE{4adEIE

2. 1 ZEHITE

3. BihBESE
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5.1.2 iEBUSANITR

Ik

StreameExecutionEnvironment 2t 7T —RFICIERIVEWERAVGZ, FREEIEREREINE.
LR RAIRRT L RHEAIISE X, BT LAThESER.

fEsLhleh, SEBYCEBAT

// MR BRI+ Al dpatastream[SensorReading] X %
// ingest sensor stream
val sensorbData: DataStream[SensorReading] = env
// WL EESource
// SensorSource generates random temperature readings
.addsource(new SensorSource)
// BB A KA 2R
// assign timestamps and watermarks which are required for event time
.assignTimestampsAndwatermarks(new SensorTimeAssigner)

5.1.3 R FAE5IE(Apply Transformation)

LIRENEI T patastream , FEATLARTERIFAEH%(we can apply a transformation on it), HHEA92EEY
BR%:

1. BT LA BEAY Datastream , FrEAIBERARZEEAY(eg. Datastream[Int] =>
DataStream[String])

2. BURRAEY patastream FHIRE, MEEISXSEYEHITERAR.

3. MAERFRNZIE 2 EIT — R ERHRE ) AT,

fEschich, RSN

val avgTemp: DataStream[SensorReading] = sensorData
/7 U FE N PR B e 0 4% IR
// convert Fahrenheit to Celsius using an inlined map function
.map( r =>
SensorReading(r.id, r.timestamp, (r.temperature - 32) * (5.0 / 9.0)) )
// WYL B dR o 4 e
// organize stream by sensoriId
.keyBy(_.1id)
// IR HVRSN & F o 4H
// group readings in 1 second windows
.timewindow(Time.seconds(1))
// AEF AP B E R ECRTHE PS50
// compute average temperature using a user-defined function
.apply(new TemperatureAverager)
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5.1.4 HHER

RN AR EEEHER LR —LIMRRE S (external system), #llApache Kafka, MEFRFEEIE
FE. Flinki2t T —HRRERC, YTETEBHEREAFRRNRS. BoILSLHB R EUEL. £8
—L FEREFRARNER, MEEIFIinkiaIEIEIRZ(queryable state)IBEERIEMRTELER.

EFRAI9RBIF, &% patastream[sensorreading] FHIERIEAEREE. B MCRE SERESES
PRNSRE. BIERprint)BERRE N MER

avgTemp.print()

5.1.5 1T

BN AENTRE, TTLUBEIER streamExecutionEnvironment. execute () EHITE:

env.execute('"Compute average sensor temperature")

FlinkfEFrER 2@ iR HE (lazily execute) Ry THIIT.

o thEiRiR, ABLEIEERIRAIFIRIRIERAP ARSI B R (A SERAI SRR,

o AR, XLAPIERRRENITIMETOIZ—MATIHE. ZitRIEEN NS eEaR AR
RMNATIXEEHRRS LRI—FRFIER,

o REMAMA executeO B, RAZMRIZFAINIT.

ST S e 9)obGraphFHig3sig)obManagerififT.

o RIENITIRIBRIEE, RETREEEIS obGraph KX BWEAFILIZE IR obManager, &%
JobGraph&ixZ!izfE/obManager,

* Y5 JobManageriZf@iz1T, FRTJobGraphZzih, HATEBERME NS NAEFRIEZEMRT
T HKHTAY) ARSI

5.2 BEHRIS(E

EATH, EiSHARADataStream APIFREIEAEELR,

o RAFRLU—NHZSNEUERIEABN, FEEIEIEA— N HZMNEHR.
o HE—/ DataStream APIREFAR LAILIFE 8 BIESAEEEREEE— WM AZIE
FyDataflow[E.

REHRVERET AP BEX Rk N, RERGHRTAPEE, 5E 7 NEmNRRY
TCRIEIRIEHIRATTR. BB MR ORKEX, BN T EAI MapFunction
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class MyMapFunction extends MapFunction[Int, Int] {
override def map(value: Int): Int = value + 1

3

DataStream APIAHPLL B H I AUEHE SR FERIRL 7 XN AYAR SR, FfiJiEDataStreamAPIfYEEHR
b2 ES

1. (ERTERANSHIESER

2. (X ItEFR(ESFhIKeyedStream4EiR

3. BEFBEREHNI—FIRE—FEERIF D RS FRAER
4. 3RS H TEMRBRN S KR

5.2.1 A4

ERCIRPHLES ISR, XERESMILICRABEHPMINCRENRD. BUAEAREREE
B BRERSR. CRFDETIRS.

5.2.1.1 Map

BT A patastream.map () J3iAAJ LS Emap k= E— il patastream . BREEMINFH
{EIBA AP BE X HET 28 (user-defined mapper), BREIERREI—MEHEM, X NMEHEHTREER
[E258RT(eg, DataStream[Int] => DataStream([Stringl), El5-1 2R TEEMNERFEEAERNIMap

...:..Q>OOO.OO>

Figure 5-1. A map operation that transforms every square into a circle of the same color

MapFunctionfJF MBS DRI R RMASARIREMBMHEMARISRE, vapFunction BImapO 73
RS MNANS SRR — MRS

// T FATGEMAEDE

// O: HithmERrRAY

MapFunction[T,0]
> map(T): O

TEE—MERGF
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val sensorIds: DataStream[String] = reading.map(new MyMapFunction)

class MyMapFunction extends MapFunction[SensorReading, String] {
override def map(r: SensorReading): String = r.id

}
AT LA LambdaZRiAziH—5 81t

val sensorIds: DataStream[String] = reading.map(r => r.id)

5.2.1.2 Filter

fliterf&IEIT—MNRENEA Boolean XBIMREKREFRHIZES:

o WMRIRENEAtrue, APACSREBMASHHEBHEREEE,

o BNESIBEHER.

o EiJFFIDatastream.filter()/5i AR LUEREIL USRS R, FEMSHIADataStreamtBREIFEEAV
HDataStream,

o ES- 28T — 1 RIRERETHRINTISIEIE.

mioRd(f /——

FilterFunction RBISHZEHWANRRIXRE, SHY filter O TEER—MENSHHRE—MERE:

FilterFunction[T]
> filter(T): Boolean

TEEANERNGF

var filteredsensors = readings.filter(r => r.temperature >= 25)

5.2.1.3 FlatMap

flatMapftifSmapseil, (EREALNEMINBHERBY. — 0S4 WS,
El5- 38R T — M EFEAFHIEER S HM i atMapi(F.
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o MERMARBHELR, WAIMHMEZEL.
o BREHREH,
o BIRBITREFE,

Figure 5-3. A flatMap operation that outputs white squares, duplicates black squares, and
drops gray squares

flatMapEREENINT, BILABIR M collector RIEEEURAISTCRIREIFAN. — S NEHHEN
7R
// Ti FIATGRIIIA
// 0: o R ML
FlatMapFunction[T, O]
// REMEAUNTt, HELRARE
// collector[O]1E Nt &%
> flatMap(T, Collector[0]): Unit

flatMapREUE R LAUI T E X

FlatMapFunction[T, O]
> flatMap(T): TraversableOnce[0]

TEE—MERGF

val words = sensorbData.flatMap(r => r.id.split(" "))

5.2.2 HFKeyedStreamfliEifi

KeyedStreamflSRAJLANZE LASFAHRIRRE D T2 S MR ISEHFiRT.

KeyedStreamAJ LIRIERR4HFAIPAT, FrE EEHERENSHTLULREREPAE.

ETRENBkeyBy Bk, ErILUEE— patastream & 9— Keyedstream ., RGNBRNES
flReduce, EBfIJATLAMERTE keyedstream t
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5.2.2.1 keyBy

keyBy#ti@Eid fERIgDatastreamiifkgKeyedStream, HIERFHNEHSRIBERAREH S EE
ARERYS X(partition), EEHERRMFIEEMHEH FHFEFIR—MESLIE.

BAVRRIAMAS MR, BS-4BReNRE— oKX, BBERMSEHIRES—1D
X,

Figure 5-4. A keyBy operation that partitions events based on color

keyByRILARZfMA R RIRBUMAI S, W=

a dot afterwards

TEZE— " keyByHIfIF

val readings: DataStream[SensorReading] = ...
val keyed: KeyedStream[SensorReading, String] = readings.keyBy(r => r.id)
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5.2.2.2 RIS

RIS MAFKeyedStream &, BER—MEEREER (K. H/IMEFIRKE) B
DataStream,

o RNREGEFRABMERT—ESE.

o WFBMIANSEH, EFEMRENNRSGE, HEEHENEEMRESEHRIELTIT.

o RNREGEMFREERN— ATIEERSBIRFERNSY, ZSEEEP NFER OITERES.

DataStream APHEMH T LANRIR G5 iE:

B ik

sum() RN EMNREEETR LAY

max ) RetERMAREEETR LNRXE

minQ Rt EBANREEEFR Li&RIME

minBy O ReMtEMARTESAIERIME, REZERESM
maxBy () RetEMARTENAILEKE, REZERESG

IR REERSNRUMRETEZESER, SRAEITE—1.

BlF: 33— Tuple3[int, Int, Int] KBREEES—PFREZMBRESE, ARRMNMIESEZ
NFERHIFN

val inputStream: DataStream[(Int, Int, Int)] = env.fromElements(

a, 2, 2),
@, 3, ),
@, 2, 4,
1, 5, 3))

val resultStream: DataStream[(Int, Int, Int)] = inputStream
.keyBy (0)
.sum(1)

"""output

a, 2, 2)

@, 3, D

2,5, D

a, 7, 2)

FATERSA, HoATRRETEZRENM, FEATBRARX
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5.2.2.3 Reduce

reducet& i 2iRENR EA—RR4(generalization),

e BfEKeyedStream R T —ReduceFunction, ZEHIEEMNENBHSLYETMIreduceLRiH
T—RABE, HEH—  DataStream,
e reducefR&pIEDataStreamfR!, HHRAIEE SHMNRAIZEUER.

ReduceFunctioniZOENIT

// T: JLEmFEH
ReduceFunction[T]
> reduce(T, T): T

TEZE—reduced&HAGIF. ETEAIGIFF, BEARSLNESEUFIREHRHITOX, REER
BB NMES T E— T EFRSRIEIZR:

val inputStream: DataStream[(String, List[String])] = env.fromElements(
("en", List("tea")),
"fr", List("vin")),
("en", List("cake™)))

val resultStream: DataStream[(String, List[String])] = inputstream
.keyBy (0)
.reduce((x, y) => (x._1, x._2 :::y._2))

output

("en", List("tea™))

"fr", List("vin™))

("en", List("tea", "cake™))

5.2.3 ZiftiEik

TFENAFTERZS MBARBGERGE, FE—ENATES—FRDEINESEFFRUANAREE
1B, TE, FAIEHEBLERLES MANREEZ MatIRAIDataStream APIEEIR,

5.2.3.1 Union

Datastream.union() 75 AR LAGHA S Z MERSEIN patastream , FAR—METHIZEEUERAY

DataStream,

El5-58 7 — M unioni#fF, BRREMRKESHSHEIRMaHRF.
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Figure 5-5. A union operation that merges two input streams into one

unionBfTIIEEF, RERFZRISEHLFIFONBRNEH, HIRFFXZEFRIE(The operator does not
produce a specific order of events.), Itt5F, unionBEFARIIEUIBHITEE, B MNENSHEMK
RIXEITHE,

TEEME=FHEREGHA—F0F

val parisStream: DataStream[SensorReading]
val tokyoStream: DataStream[SensorReading]
val rioStream: DataStream[SensorReading] = ...

val allCities: DataStream[SensorReading] = parisStream,union(tokyoStream,
rioStream)

5.2.3.2 Connect, coMap, coFlatMap

ERIXF—MUA, CSEMRMKE, FEREXRNINERESAHER. NANEREERSFIER
feRkas LIZEE. LiREETAENRE HE WS KERE/T, NARFRKHNRER, XA, B
THEREZBERM, BIIFEESHARRRIRIERR RN SSRGS IR

LA, SHRNRIISGHRRGEPIFEERINTER. TEREEEXAIAP

DataStream.connect () 35— DataStream#FREI—1ConnectedStreams¥J&, 1ZWEREz R
NS E—EAR:

val first: DataStream[Int] =
val second: DataStream[String] =

val connected: ConnectedStreams[Int, String] = first.connect(second)
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ConnectedStreamsXISIZ M T map(fiflatMap(), E{RFEERS

HIABR T, connect(ALERNRNSEMZE BIUXR, EHFmNRHSHEENS EEE FES.
XFTASFERRENER, BEEFTHEEIN. ATEConnectedStreams LF=AREMER,
BJLi& connect()5keyBy()skbroadcast()4ES{ER.

o S keyBy O B, connect O ISR FLIERTEEHRRNSEHLZZIR—IMEFIS
£

* M={EMA broadcastO BY, MERMPE—FW &, ENEHRO KRG TFEFRREES L.
XA LARIEBR S AMEX P M NAHITTER .

5.2.3.1 SplitfiSelect

splitRunionfIiZE(E. SIRBEAR SEINSHNFERRENE S MELRE. SMIASHEHTLL
WRIXEBD. —AMHSAN BN, AL, split& BRI RTEiEsaEsE .

E5-62m T splita ¥, ERMEHRSHSEMEMSTT, REFRREIER.

[

uE
I..

Figure 5-6. A split operation that splits the input stream into a stream of white events and a
stream of others

H| |Hin] |N

split)7FELA—OutputSelectoriREiE 1 EASEL.

// IN: [FIDataStreamfIcEKA!
outputSelector[IN]
> select(IN): Iterable[String]

BMHRNSHRIRATEISTER outputselector.select ) 757k, FHBERMRE—
java.lang.Iterable[string] ., IREIHIXA string FIFRFEIE string RXNEHFTEIEHIR
9B,
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splitQ FAERE— splitstream &R, XPMRIFIRME— selectO Fi%, BIIIEEHEBFRM
SplitStream RIEIE—EEH S K.

SEHIS-2: B—PMEFRDE— N AEFRA— M INFR

val
val

val
val
val

inputStream: DataStream[(Int, String)] = ...
splitted: sSplitStream[(Int, String)] = inputStream
.split(t => if (t._1 > 1000) seq("Targe") else Seq("small"))

large: DataStream[(Int, String)] splitted.select("Targe")
small: DataStream[(Int, String)] = splitted.select("small™)
all: pataStream[(Int, String)] = splitted.select("Targe", "small")

5.2.4 3 REER

SfsiADataStream APV BRERFRS, RASARIERIEE IR ERFTE KB oS R IR S KRS
FISEIERE R ZIERINER. BRENTEFEREEFNERSEERR. 480 , HIIBNA
DataStreamep 3Tl X REREL B RE X 23 X RBRAYTT %,

THEZ

BRI KRS
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&

Uiz

i (Round-
Robin)

EiffJ(Rescale)

I8
(Broadcast)

£Ri(global)

BHEX

BENSREIFIT

ik

BRI KRR FDataStream. shuffle() 75 ASE, 1%/ iAG S HHEH D ECE
TEEFRFTESP.

BRI EERMANRNSEMG RS IS DEA RIS,

rescale(tERLUCHRATSNEMHITH R, EEENLFESRS B89 TiF
ESEAEEE. S DRESEENT ISR, XMTAREFR, T
B T i ERNX 5]

{a) Round - robin (rebalance)

broadcastOISBNRTPRIFHES, FREEREE TNFEFHIREHTE

5.

global )TN EURRRIFTAE S A XS TR NS — M HHTES. ©
MINOMERXFDXRE, RABRESEHEAE—ES TR NRBER

fiae

SNRFTETE LD KERISEBAGIE, (RAJLAFIApartitionCustom()73i%&%E
TE X 5 X R

val numbers: DataStream[(Int)] = ...

numbers.partitionCustom(myPartitioner, 0)

object myPartitioner extends Partitioner[Int]{
val r = scala.util.Random

override def partition(key: Int, numPartitions: Int): Int = {
if (key < 0) 0 else r.nextInt(numPartitions)

}



5.3 RBEHITE

BFHFHTETUERTIRRERSEFRAIETES. BOABRT, MANREEFIHFHTERIRE
FNFERTIRRRIFTE. MHTIRRRFTEISIRIEN REMBIFRLHY E T Bk,

o MRNAREFEMMITIRRTET, WSHTERENSCPUREZHEIRS.
o EFETAIFIINKEBHRSZN FIEFRS, BRERFPEREE, BNMEFHTERIREEEENA
HiTE

RFEEFHITERE NEAMEHITESHNENTAZRENEE, N RISBAEHTER x, 7Ld
REBEFHITEAyY = x/2, HEAISITH x=8, y=4. MEEEHEITHT x=32,y=16 , XHEHIEITIA
B, BEFHTEDILBEZ L.

TEAIFER 7 IMERBAMEF T ELARINIIR EIMEFH1TE

// REGREIAT
val env = StreamExecutionEnvironment.getExecutionEnvironment
val defaultParallelism = env.getParallelism

[/ VEEIREIIATE
env.setParallelism(32)

TERMIFER T IMMRERFIAHTE

[/ RBOREIAT R
val env = StreamExecutionEnvironment.getExecutionEnvironment
val defaultParallelism = env.getParallelism

val result = env.addSource(new CustomSource)
// BEmapiHATEEABRIN AT S
.map(new MyMapper).setParallelism(defalutParallelism * 2)
// printEBEIC AT R E N2
.print() .setParallelism(2)

Flink DataStream N FBFTA MBI B IASIEN R AEE. XEMENRTEEBRFIIIIRE
Sk, LUBIMEAEEN], BRENBENASRER. RERIIRER, SMASFIRIE. Flink{ER
KBUSR(type information) AL SERREIRERE, FASMEIEEE BMERITENFTINER. RF
SUEEETILL RS,

—RRER T, Flink&BaLABaHREEIEISRIIREBISR, (BSBHENRRRMAT, HNFEFIEE

KBS,


af://n1428
af://n1445

RTFAISTTICFInKSTFRIZEEY, INEIEEABIERAER, LIRSFInkTT A B s R EAYRE
RARBTINMALIRRRI S RS BISRBL R E.

5.4.1 SISHOEIRRE

Flinksz#avafiScala el FRROFTE B INEESREY, LIS LA

o [RiREEY

JavafScalasgéd

Scalat¥flZ(case class)

POJO

—UOHERRSERY . BU4H. PR, BREY. MEF

XITPOJORIMERE . MIR—NEHEBINTHEM, BESWFlink&{EPOJO

. B—NEH

o« BAABHTEHIAEE

o FEFREEABIRERET AN getter LU setter J5ik
o FEFRAEBRRFINKTISHI

SHTTREBINMRRE . FlinkSTHFSMIFRREEL, tban

o JRIAEEXISRIEBINTENAH;

e JavafYArrayList, HashMapFIEnumzsEY

e HadoopRJWritableZ&HY,

e ScalaffJEither, OptionFOTryZBILA R Flink ERsCIRAY)avahRAAIEither2EY

5.4.2 JEIERBIEIERBUER

FEFlinkBRELR G, #ZILSER TypeInformation , BARREMFIMLERTILLEREREM TR ERIE
B, HRERHITRY, FlinkfRBE RSN AEZGENEG MNMGERE B Rk
TypeInformation, FlE, KZBHERT, KIJEPISBUEFMSEREES, EHEIHENRKARAT,
MR IS EEUERBF AR TypelnformationT ,

TEZELNER TypelnformationfyfIlF

// JRUE2EA K TypeInformation

val stringType: TypeInformation[String] = Types.STRING

// ScalacliiTypeInformation

val tupleType: TypeInformation[(Int, Long)] = Types.TUPLE[(Int, Long)]
// case classiTypeInformation

val caseClassType: TypeInformation[Person] = Types.CASE_CLASS[Person]
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5.4.3 EXRHRBIER

TR TypelnformationfIA NG, SE—EEI3EM ResultTypeQueryable EOKY EBHR
#. WTEHIFFR

class Tuple2ToPersonMapper extends MapFunction[(String, Int), Person] with
ResultTypeQueryable[Person] {
override def map(v: (String, Int)): Person = Person(v._1l, v._2)
//PlResultTypeQueryable
override def getProducedType: TypeInformation[Person] =

Types.CASE_CLASS[Person]
3

ETHh, TEE N DataflowRd{$EFjava DataStream APIAY returns O AixREBRIEEEEFRNREZE
i

persons = inputStream
.map(t => new Person(t._1, t._2))
.returns(Types.CASE_CLASS[Person])

5.5 EEX EFN5 | H=FER

FEFlinkhER S EE(HAEEES| (key specification)FN1RERBIM(field reference)fditt75, FlinkSRFAEZH
SHNRFRARENE: B TNERUSREN. BUETEAFBENFERFRANKREN. BT
KeySelectorEREEEENX

5.5.1 FRR{UE

NREFELRBRETA, NWRFERINTHTENFERAEN T LE .

PN T EX M FERTTEN B AN FERIF BN RIEE

val input: DataStream[(Int, String, Long)] = ...
val keyed = input.keyBy(1)

Itesh, EETLAERS N T EFREEN EGHE

val keyed2 = input.keyBy(1l, 2)
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5.5.2 FFERFIARN

B—MENBIEEFRD ZRERETFFHIRNFREREN., FREFENERTITA. pojoflcase

e

/7wl R BRI
val keyedSensors = sensorStream.keyBy("id")

// FETCHRR EAH T BERIEA
val keyed = inputStream.keyBy("_1")

// R RIS EA KR EPOIOT BN HE
val persons = inputStream.keyBy("address.zip")

// ERIEECTE T SRIEFEIOA AR B v
val keyed = inputStream.keyBy("birthday._")

5.5.3 KeySelectorif£q

E=MMEERAVSIUEERKeySelector s, ERILUNBIASFHIZEURE

// T BIAJGEMIZEA

// KEY: B3R

KeySelector[IN, KEY]
> getKey(IN): KEY

THEAAIFRIREITATRISRKFERFIERE

val input = DataStream[(Int, Int)] = ...
val keyedStream = input.keyBy(value => math.max(value._1, value._2))

5.6 SCINEREN
fEDataStream APIRERZSHSBEFEHABENRE., ATIENBFlIinkdhE X RERY LS
5.6.1 ([{EE

Flinksh i AP BEX BEE 2 LR OEE MR AT ZUXISMRERY, “0MapFunction,

FilterFunctionfProcessFunctionZs


af://n1519
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AT LUBIT SR O a8 ORISR RIS TURE LR, FIsl T EAIGIF

class MyFilter extends FilterFunction[String]{
override def filter(value: String): Boolean = {
value.contains("fTink")
}
}

val filted = sentences.filter(new MyFilter())

HE R FFIRY

Flink{EA)avaFy LRI EIE RERIR, LMEREIAREEYNIIEFES. BRRETE
BRFTERTEHBLRETFFIE. REHREFEE—MEFFIEIRISREA, ETLUGHESTI
A—MEERE, FiEopen(TTiEHHIaHAEFIIFER, HEBEES)avaFFIIIRFFILTTIE.

5.6.2 Lambdai#§

A LAEE LambdaZRIATCRITT TURE ) R

val filted = sentences.filter(_.contains("f1ink™))

5.6.3 EH&N

B, HNFEERLY LEBBE—NMeRZAH T LR TESE RS HEITERN ETXER.
DataStream APHRMHt T FERIREL, BN ZRINZIREBREMEELRTLAXSIMREEZII8E.

DataStream APIFRIFTERARREEREX NN ERE, EREAERAEMEBREAR LambdaFE]
HE, EREHIZFRLARIChFFL, fFlaIRichMapFunction, RichFlatMapFunctionZs,

HFFAEREET, RSN REHIE BRI N SN L
e open() FERERFIWMNAEX. EEESMESERARSEIRS EZEIER—RX
e close() HEZERERHNEILFZX, SEEMSRE—XNARSREEREB—X. B, BiE
BT EEIRNER.
o 54k, IEATLERAEREETH getRuntimeContext O FiERMEREIAIRUNtimePIREN—L(EE

class MyFlatMap extends RichFlatMapFunction[Int, (Int, Int)]{
var subTaskIndex = 0

override def open(config: Configuration): unit = {


af://n1548
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subTaskIndex = getRuntimeContext.getIndexO0fThisSubtask
/ /AT — WA T AR
}

override def flatMap(in: Int, out: Collector[(Int, Int)]): Unit = {
[/ FALS 14905 MOF 45
if(in % 2 == subTaskIndex){
out.collect((subTaskIndex, in))

3
/ /80— LA AL PR T A
}

override def close(): uUnit = {
[/ A B T AR
}

5.7 S AIMERFIFlink{fis

ESCHLFlink R YR B R ERIN—Les M apikEs, NAEHITRY, YRBEEIRRZEIFraHkE. EIAER
T, FlinkEBERINEZOAPHEKER(DataStreamF1DataSet API), IJF-mz FARVE kRN IR VIR(H,

BRMEERRRATER TR AR AT LSRR

1. BRTE BTN AR ar@, Epk— 1 Far”
2. BAERREIFIinkRY . /1ib BRT, XEFEFlinkHZE sl SBSREBNEEIClasspathHh

RS M.

SF6E EFMEMEONEF

TEAE:
1. 85, BAMEIMTECERESTE. BRZFIKiL,
2. %5, BITBNELIEFHE(process functions), TR T XIS ERFNKILAHIEFH AT LT

IS, BTFLURIERERIAPI,
3. TR, BAVEERFINKAIEOAPI, BEINRENNEOEEERM T WESTI.
4. fREE T R BEXBOEF.
5. 8F, BIVEHCEIERI OINFEELAR A BIERE MRS,
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6.1 EcER S

fEDataStream APIdr, EaTLl{FERYENSE(the time characteristic)&SiFFlink{EQIFEE ORTUEIEN.
B8], BEMEHER streamExecutionEnvironment —1NEM, BEZLITNE:

=] 2 5

ProcessingTime(t 1SEEFIREAMAINZNHRRELIETSRNNE. FARERLE
12Ad1E) K, MEEEERE

EventTime(ZE{4Ad EER FEAREHREFFNERRBESRE. SMAEHSETE—
) AR, FRAEANBIERIEAKAIZLTE .

IngestionTime(1& EES MR CREC SRR FRIL IREE /SRR R RIEE
IN:: 1)) FEIERIKAZ.

TEZE—MREREEFERIF

val env = StreamExecutionEnvironment.getExecutionEnvironment
/7 FERLFH A I A I ]

env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

6.1.1 D ECAYEEEFNERL KL%

AT RERESHRBERETFE T IE MRREFFERMINKEHANEZIER

1. SN EHEHBO/R SRR, EREE RS SRR ERIRTE,
2. BHBIAEIRREFEE TR, BT HETRGRISRIS4RT A,

ATRIEEAOZK (AR 2 BT M 1970-01-01 00:00:00LRHIZIENEE. KULSFEF, FYBFIRL
&N FERFFKLLRIS .

DataStream APIF#E{tT TimestampAssigner #00 (HBESESS)  ATFESHEBMAIRRBEG
MNEHHIZNIEE. BF, [HEEOERSEERFEREENER. ot AT HRRKESEART
ENEFREELE, YEHIRBRSHNRNE A TEZEERR AR E RS

EES TSN TERBIOEGERET 20l SISERESHR L, HER— HaEEKL
LHIFRERER. ATRE D BCRs ARSI DataStreamAVEHESEEY,

TERREE S RBOERE, BRI assignTinestanpsanduaternarks O 753
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val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

val readings: DataStream[SensorReading] = env
.addsource(new SensorsSource)
// AEF L SCRT (1R 53 e 25 >R 70 T B 1) BRI A ek A 4k
.assignTimestampsAndwatermarks(new MyAssigner)

BE XA E& D Bas £ &5 /9w

1. FIHRMKGIE P ELRE: BEAER HKuL
2. ERK(ZES TR RIEMASMPIIE DN B SERCREMKL

6.1.1.1 FHAMEK (& S TS

[BHBMES BRI S X R R G LA BERN 2RI BEIER & oK A L s SR thaidt. BRARERR
At Ei&E 200%F). TJLAFEM ExecutionConfig. setAutowatermarkInterval () /55EXTEIFEATENH
1TEE:

val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

/ /B KA R ] b v BB S RD— I
env.getConfig.setAutowatermarkInternal (5000)

mhle-3RR T — RIS ERE, CEIRERE BRI L8RS AR AR RS ERK AL
2., JFBEEMFTVKENT, DEsRRE— M EEESFTRARIERERE13HEZRMEAIKAILZ.

/%% 58 LA A BT K AL R N () 4y T2 /

class PeriodicAssigner extends AssignerWithPeriodicwatermarks[SensorReading] {
val bound: Long = 60 * 1000 // 18 =f4, A
val maxTs: Long = Long.Minvalue // M&Z3 )5 K] E;

/%% RA KL R M i/
override def getCurrentwatermark: watermark = {
new watermark(maxTs - bound)

/%% FH SR AR T [E) BRI 77 % /

override def extractTimestamp(
r: SensorReading
previousTS: Long): Long = {
// SO A
maxTs = maxTs.max(r.timestamp)
// IRTEIE I I R
r.timestamp


af://n1644

/¥ P IXA L /

val readings: DataStream[SensorReading] = env
.addsource(new SensorSource)
.assignTimestampAndwatermarks(new PeriodicAssigner())

DataStream APINE T AN IR RIERAEEIE K LA RR S TEER.

1 assignAscendingTimestamps

NERIEATNTTRAINS AR R RIAEIRRY, BRAEHLUERTTiXassignascendingtimestamp,  It675i%
(EFR=RIR AR AR . (ERXMSNURBEBERER, FEILrIREtuaiaiHt

val stream: DataStream[SensorReading] = ...
val r = stream.assignAscendingTimestamps(e => e.timestamp)

2 BoundedOutOfOrdernessTimestampExtractor

FEHBEK R A —TERIERE, (FILFUEEBARTSEZRRAEER ((EHEUHEITH
RIIE& SFrASERIZIARIT RN R NEZENER) . WTXMER, FlinkigHtT

BoundedoutofordernessTimestampExtractor , BiFmATREIEIR{EA— S8

val stream: DataStream[SensorReading] = ...
val r = stream.assignTimestampAndwatermarks (
new BoundedoutOofordernessTimestampExtractor[SensorReading]
(Times.seconds (10)){
override def extractTimestamp(e: SensorReading): Long = e.timestamp

BAME R LEIR N 10D
I BBl % 5 diextractTimestamp

6.1.1.2 FEERKAIZE D ECEE

B, MAREE—ERRRHEASTATTAESIRC, Flink aXMERRM T
assignerwithPunctuatedwatermarks &[0, ZIEOEN T checkAndGetNextwatermark () Hix,

ZIERBEBANFMR) extractTimestamp O ZIEWIRARM. 25 AATLARERE ERRTRRIK(ILZ.

TEENMIF
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ik

* Assigns timestamps to records and emits a watermark for each reading with
sensorId == "sensor_1".

)
class PunctuatedAssigner extends AssignerwithPunctuatedwatermarks[SensorReading]

{

// 1 min in ms
val bound: Long = 60 * 1000

// WHEAZITER B AR . HORTZHERIKAIE, B 2R ax ANk A 2k H
override def checkAndGetNextwatermark(r: SensorReading, extractedTS: Long):
watermark = {
if (r.id == "sensor_1") {
// emit watermark if reading is from sensor_1
new watermark(extractedTS - bound)
} else {
// do not emit a watermark
null
}
}
// R R
override def extractTimestamp(r: SensorReading, previousTS: Long): Long = {
// assign record timestamp
r.timestamp
}
}

6.1.2 JKfitk. ERRTE AR

KNS EERTHERERTIERAITERNM.

o WFKELRERTTER, SSERANERFBEFEESHEFHTRRETIE, BRE2N
SRR

o WMEKMLZIRERITTHRIE, UER

o BETICKMLRERBSHEN, BathiBII&E

o MWTIRAENA, MEEEEEMTELZE— NS

6.2 P IREREI(Process Function)

TEEENAEEREF IR REEKAIZEER.

DataStream APIRH—ZRFIENREVGEIHR(F— U IBEE, XLEHANE VREX,
o TLUAASEAAIRTEREFKGIZ,
o IERLGEMERER Bt A0 RIES
o FEILLEIS RS (side output)IhgE, KHICRINSNMELIR.
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Bal, Flinkigt T SHARRI IR ERE]:

e ProcessFunction

e KeyedProcessFunction

e CoProcessFunction

e ProcessjoinFunction

e BroadcastProcessFunction

e KeyedBroadcastProcessFunction
e ProcessWindowFunction

e ProcessAllWindowFunction,

TELAKeyedProcessFunction a4l

o KeyedProcessFunction@— PMEERiEAVRZL, {EAFKeyedStream L,

o WRHBFRICREAZRY, SRETR. —FKASKICR.

o FHEEEMTRichFunctionig¥[d, FE#R{EtTopen(). close()flgetRuntimeContext()75i%.
o 34, KeyedProcessFunction[KEY, IN, OUTIAEIMEM T LATNRFMHS G4

1. processElement(v: IN, ctx: Context, out: Collector[out]): Context2HIZRHAIRIEZ
. BRHHIEHINEE. 8. TimerServiceZFRYikME, tHh, ContextB]LUGIER
RIEZREEE.

2. onTimer(timestamp:Long, ctx: OnTimerContext, out: Collector[out]): B2— MEIER

3, SZAnIMEVHIERMARE, ESWER, IMTIHIT RS ERBIRIRIE.

KeyedProcessFunctioniZzOREABIIT

/:': ¥*

s

A keyed function that processes elements of a stream.

* @param <K> Type of the key.
* @param <I> Type of the input elements.
* @param <O0> Type of the output elements.
*/
@PubTicEvolving
pubTlic abstract class KeyedProcessFunction<kK, I, O> extends AbstractRichFunction

{
private static final long serialversionUID = 1L;

pubTlic abstract void processElement(
I value, Context ctx, Collector<0> out) throws Exception;

pubTic void onTimer(
Tong timestamp, OnTimercContext ctx, Collector<0> out) throws Exception

{3

/:‘::‘:
* Information available in an invocation of {@link #processElement(Object,
Context, Collector)}
* or {@link #onTimer(long, OnTimercContext, Collector)}.
-.':/

public abstract class Context {



public abstract Long timestampQ);
public abstract TimerService timerService();
public abstract <x> void output(OutputTag<X> outputTag, X value);

public abstract K getCurrentkey();

* Information available in an invocation of {@link #onTimer(long,
onTimerContext, Collector)}.
*/

public abstract class OnTimerContext extends Context {
public abstract TimeDomain timeDomain();

@override
public abstract K getCurrentkey();

6.2.1 TimerServiceflTimer

MR _FEAYRRSEAIAERIL, context I2ft— timersercvice O Ai%, BaIREI—
Timerservice , X MEORME T —ZRKYIATEHEXAVEE. BAUNTERED

public interface TimerService {

/% %R [E] 2 AL EE R ]+ /
Tong currentProcessingTime();

/*F IR A A FT K ALLR * /
Tong currentwatermark();

/% % Y A B B 1R R g/
void registerProcessingTimeTimer(long time);

/AR T 8/
void registereventTimeTimer(long time);
void deleteProcessingTimeTimer(long time);

TSR I 2/

void deleteEventTimeTimer(long time);
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#£KeyedProcessFunctiond, SANMERISMREHRRETM—MTEIRE, XL SRR AERE
EI—MRSEPATI,

SRBEREERR, THRESEEAMER. MRVAEFFEMNSEPRIRE, BIAENAERE
RS FRE G RIS N FRTE IS R S BN A

TEEAIELI— 1 KeyedProcessFunction, BISMHERESHNEE, WNR(ERESHIEEELMIERTEIE X F
BFEIMN Y, MakHEs:

object ProcessFunctionTimers {

def main(args: Array[String]l) {

// set up the streaming execution environment
val env = StreamExecutionEnvironment.getExecutionEnvironment

// use event time for the application
env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime)

// ingest sensor stream

val readings: DataStream[SensorReading] = env
// SensorSource generates random temperature readings
.addsource(new SensorSource)

val warnings = readings
// key by sensor id
.keyBy(_.id)
// Vi KeyedProcessFunction/H &SI TempIncreaseAlertFunction
.process(new TempIncreaseAlertFunction)

warnings.print()

env.execute("Monitor sensor temperatures.')

/** Emits a warning if the temperature of a sensor
* monotonically increases for 1 second (in processing time).
*/

class TempIncreaseAlertFunction
extends KeyedProcessFunction[String, SensorReading, String] {

// g ARk R AR
lazy val lastTemp: ValueState[Double] =
getRuntimeContext.getState(
new ValueStateDescriptor[Double] ("lastTemp", Types.of[Double])

// A R ER ) — AT I
lazy val currentTimer: ValueState[Long] =
getRuntimeContext.getState(
new ValueStateDescriptor[Long] ("timer", Types.of[Long])
)
[FERIRGA LR >/



override def processElement(
r: SensorrReading,
ctx: KeyedProcessFunction[String, SensorReading, String]#Context,
out: collector[String]): uUnit = {

// get previous temperature
val prevTemp = lastTemp.value()
// update last temperature
lastTemp.update(r.temperature)

val curTimerTimestamp = currentTimer.value()
/) ENUIN SRR —AFAZER T, AT R
if (prevrtemp == 0.0) {
// first sensor reading for this key.
// we cannot compare it with a previous value.
}
// OHSE RN T R IR, AR BRSO RS v 28 LIS SRR T #RAS
else if (r.temperature < prevTemp) {
// temperature decreased. Delete current timer.
ctx.timerService().deleteProcessingTimeTimer(curTimerTimestamp)
currentTimer.clear()
}
/7 W EEH R BT 2 R BT HA AT TR, e — A s S AR R TE I 25 T HAARAE B AR

EEN)
else if (r.temperature > prevTemp && curTimerTimestamp == 0) {
// temperature increased and we have not set a timer yet.
// set timer for now + 1 second
val timerTs = ctx.timerService().currentProcessingTime() + 1000
ctx.timerService().registerProcessingTimeTimer(timerTs)
// remember current timer
currentTimer.update(timerTs)
}
}

/% I A I 2 U P IX A R s/
override def onTimer(
ts: Long,
ctx: KeyedProcessFunction[String, SensorReading, String]#OnTimerContext,
out: Collector[string]): Unit = {
// EEAFE4IStringlE i H S, HSTRE T —FER
out.collect("Temperature of sensor '" + ctx.getCurrentKey +
"' monotonically increased for 1 second.")
// TEA I AR
currentTimer.clear()

6.2.2 MEIMmEARZIXEEIE (Emitting to Side Outputs)

st (side outputs) 24 EREAT—MFE, SULUMNE— M REEZHSFEER, BalEmEAYT=
EBITL SHARFE.
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TEEZENMIF

* T REMR T 32FMLEL, 21l Elfar R H R
:’:/
object Sideoutputs {

def main(args: Array[String]l): uUnit = {

// ingest sensor stream
val readings: DataStream[SensorReading] = ...

val monitoredReadings: DataStream[SensorReading] = readings
// monitor stream for readings with freezing temperatures
// VA F AL B o %
.process(new FreezingMonitor)

// retrieve and print the freezing alarms
monitoredReadings
.getSideoutput(new outputTag[String] ("freezing-alarms™))
.print()

// print the main output
readings.print()

env.execute()

/** Emits freezing alarms to a side output for readings with a temperature below
32F. */
class FreezingMonitor extends ProcessFunction[SensorReading, SensorReading] {

// define a side output tag

[/ SC—AE i HARAS

Tlazy val freezingAlarmoutput: OutputTag[String] =
new OutputTag[String] ("freezing-alarms")

[/ SEEGATCRM T A
override def processElement(
r: SensorrReading,
ctx: ProcessFunction[SensorReading, SensorReading]#Context,
out: Collector[SensorReading]): Unit = {
// wnftsensorreadingE /N T-32F M\ Freezing Alarmgl4iih
// emit freezing alarm if temperature is below 32F.
if (r.temperature < 32.0) {
ctx.output(freezingAlarmoutput, s"Freezing Alarm for ${r.id}™)
}
// FififisensorReading#foutputFH Hiim !
// forward all readings to the regular output
out.collect(r)



6.2.3 CoProcessFunction

SHTFERNANREERIE, DataStream APLIEIR{E T CoProcessFunction, S5CoFlatMapFunctionZg
i, CoProcessFunctiontBf@{ft T —XHERES M _LRVEEHETTIE processETement1 () 1

processElement2() ,

THEREMIF

object CoProcessFunctionTimers {
def main(args: Array[String]) {

// set up the streaming execution environment
val env = StreamExecutionEnvironment.getExecutionEnvironment

// use event time for the application
env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime)

// switch messages disable filtering of sensor readings for a specific amount
of time
val filterswitches: Datastream[(String, Long)] = env
.fromcollection(seq(
("sensor_2", 10 * 1000L), // sensor_2 g2
("sensor_7", 60 * 1000L)) // sensor_7 Riit7#

// ingest sensor stream

val readings: DataStream[SensorReading] = env
// SensorSource generates random temperature readings
.addSource(new SensorSource)

val forwardedReadings = readings

// BREEEEBUITSS connect readings and switches

.connect(filterswitches)

// BEXBEANR AARIE AKX key by sensor dids

.keyBy(_.1id, _._1)

// R R HEAY S — 1~ CoProcessFunctionfij# 0 apply filtering
CoProcessFunction

.process(new ReadingFilter)

forwardedReadings
.printQ)

env.execute('"Monitor sensor temperatures.")

class ReadingFilter
extends CoProcessFunction[SensorReading, (String, Long), SensorReading] {

// —ABooleanKHPRE RV KIMFFL switch to enable forwarding
lazy val forwardingEnabled: valueState[Boolean] =
getRuntimeContext.getState(
new ValueStateDescriptor[Boolean] ("filterswitch", Types.of[Boolean])


af://n1756

// BRAF— B % hold timestamp of currently active disable timer
lazy val disableTimer: valueState[Long] =
getRuntimeContext.getState(
new ValueStateDescriptor[Long] ("timer", Types.of[Long])

[/ AP — SRR AR
override def processElementl(
reading: SensorReading,
ctx: CoProcessFunction[SensorReading, (String, Long),
SensorReading]#Context,
out: Collector[SensorReading]): uUnit = {
// REIFZET Ntrue, truefibf g4 %, falselt HE:EFMiZe
// check if we may forward the reading
if (forwardingEnabled.value()) {
out.collect(reading)

// KLERES Ak A
override def processElement2(
switch: (String, Long),
ctx: CoProcessFunction[SensorReading, (String, Long),
SensorReading]#Context,
out: Collector[SensorReading]): Unit = {

[/ FIIFRERIFR

// enable reading forwarding

forwardingEnabled.update(true)

// VBT IR BT A

// set disable forward timer

val timerTimestamp = ctx.timerService().currentProcessingTime() + switch._2

val curTimerTimestamp = disableTimer.value()

// VORI TR T E B 38 A LEEAN LR, dn S vk i 25 s AE BR 2 T E I 3, BRI E TR S

if (timerTimestamp > curTimerTimestamp) {
// remove current timer and register new timer
ctx.timerService().deleteProcessingTimeTimer(curTimerTimestamp)
ctx.timerService().registerProcessingTimeTimer(timerTimestamp)
disableTimer.update(timerTimestamp)

// TFETES Al R B, XN VSR
override def onTimer(
ts: Long,
ctx: CoProcessFunction[SensorReading, (String, Long),
SensorReading]#0nTimerContext,
out: Collector[SensorReading]): unit = {

// remove all state. Forward switch will be false by default.
// RS E Nfalse, WpifEibiEk

forwardingEnabled.clear()

disableTimer.clear()



6.3 BEOREF

BOERANATRENEE. SNUTLETREERNEREE CSNRESERE. BF, XEER
RERETHENEEENN. BOEFRHT —METERANMIBHEHEHTOENSGE, A
ERTPRIBIRATHTITE.

6.3.1 EXEORF

BORFAILANATRES X(keyed)s R {ES X(nonkeyed IEHER L. BESR -HNEOSETFHT
it8, MIERESRNENE FERMERETLE,

ER ENBAEOEFRERL:

1. F— 2 keyBy O IEE— M EHASER, ESRENHBNRFITERITL S EE MES
2. RS RERRE —EORSRGER S TR E O PRITR

THERNAIFRR T D EAAD XNEAEFEX BN

stream
-keyBy(...) /] FIX
.window(...) // fEEE NS
.reduce/aggregate/process(...) // f5EE ERE

stream
windowAl1(...) //5E 6 04, A4 (window-all, &%)
.reduce/aggregate/process(...) // {15

6.3.2 HEEOSEES(Built-in Window Assigners)

Flink ARSI EOERSREMR TRENEO SRR, AHERMNIJSICEFHBENEO k. ET
RIERYE Ao B RIE T RS H R EEE S BRES TRAEREEN. SMREEAE—
FHIaRIRIREA— NETREIIERE.

FERBMNEOSTRERMA T — RIAELEE, SQEEEHREESEORRN, ZiAREiR
MEORHE, REEENEORSMSERA.
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Flink 9N BB O BCSSFREBEREOAIZEELS Timewindow . HEFOZEBYSLRR FRAF N EIELZ [EA9
EXE (ZHEF) .

6.3.2.1 i#ZEEO(Tumbling windows)
RBE AN S TERAREENBEEXNMIEOF, WE6-1F7.

Window size
<

© 00 0000 00 0,00
000 00000000 {00

1210 1220

—r
e
L=}

Datastream APHRE TR NS HECSE:

e TumblingEventTimeWindows: FFE{4AdE
¢ TumblingProcessingTimeWindow: FAF4IERI[E]
o REOSERABKL— S8 gOX)

HlIFanT

val sensorbData: DataStream[SensorReading] = ...

// AR ER SR E] Sk 2y e v 11

val avgTemp = sensorbData
.keyBy(_.1id)
// RERELERE, KNS, SRR E D
.window(TumblingEventTimewindows.of(Time.seconds(1)))
.process(new TemperatureAverager)

// AR ALFRE F) R 4y B

val avgTemp = sensorData
.keyBy(_.id)
// FERRALERRIA], KN ALs, SRRIAE N
.window(TumblingProcessingTimewindows.of(Time.seconds(1)))
.process(new TemperatureAverager)

// FIFH— AP 3k Tl &
val avgTemp = sensorData
.keyBy(_.id)
// KANRLs, KRN E T, HAdcd I A BRI (RO A2 S5 ) R ZE 45 A A i P ke gk AT A
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.timewindow(Time.second(1))
.process(new TemperatureAverager)

BIABRT, FshEOS542ThTE1970-01-01-00:00:00.000%43%, a0, A/NA1/NTHISECSSIEHE
00:00:00, 01:00:00, 02:00:00FMEBENEO. 8&, RIS ERSTBEIE_NMSEEE— MR
BE. TENRBER T RBEN15oFAIED, ©M00:15:00, 01:15:00, 02:15:00FEENE
:

val avgTemp = sensorbData
.keyBy(_.id)
// group readings in 1 hour windows with 15 min offset
.window(TumblingEventTimewindows.of(Time.hours(l),
Time.minutes(15)))
.process(new TemperatureAverager)

6.3.2.2 BahEO(Sliding windows)

BEOS RS TR o EAXNDEEERIEERNERBMINEN, WE6-2ATR

Fixed length

E

000000 00000000
000000/000000i00
000000/000000.00

—p
12:00 . Slide P9

XTFBHEL, YAUEEEOAMMIBHER, LIEGHhEOEHMASRER,
o LigmERNFEOXDMG, BOKEE, THxIUSESSIMED.

o LBMBREAFEHOKXNMY, BETTEASHOEALTAEN, SHER.
TEZEAMIF
// AR

// event-time sliding windows assigner
val slidingAvgTemp = sensorbData
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.keyBy(_.id)

// create 1lh event-time windows every 15 minutes
.window(S1idingEventTimewindows.of(Time.hours(l), Time.minutes(15)))
.process(new TemperatureAverager)

// KEPRET (]

// processing-time sliding windows assigner

val slidingAvgTemp = sensorbData
.keyBy(_.id)
// create 1lh processing-time windows every 15 minutes
.window(S1idingProcessingTimewindows.of(Time.hours(1l), Time.minutes(15)))
.process(new TemperatureAverager)

// &5
// sliding windows assigner using a shortcut method
val slidingAvgTemp = sensorbata
.keyBy(_.id)
// shortcut for window. (STidingEventTimewindow.of(size, slide))

.timewindow(Time.hours(1l), Time(minutes(15)))
.process(new TemperatureAverager)

6.3.2.3 £iEEN(Session windows)

SKEBEAD RSB TERAKETEEERESNEO+F. SEEOMBRHAREIEER(session
gap) (XEEWENCRANIERR) EX.

El6-31iE T A T E= R B L RIEE .

Sessinnqag
Key 1
- 000 000 00

50000 0000 00
L 000 00000000

TEE—MIF

/¥% session gap B N155 %=/

// event-time session windows assigner

val sessionwindows = sensorbData
.keyBy(_.1id)
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// create event-time session windows with a 15 min gap
.window(EventTimeSessionwindows.withGap(Time.minutes(15)))
.process(...)

// processing-time session windows assigner

val sessionwindows = sensorData
.keyBy(_.1id)
// create processing-time session windows with a 15 min gap
.window(ProcessingTimeSessionwindows.withGap(Time.minutes(15)))
.process(...)

HATFRIEEORNFRRIETESREEEEBEFRMATER, SO SRR EISE TR A ERASIE
fRr9EN.

o Alt, RIEEOSEERIEESMEATERSZIECHRMEDT, FRiEuTRORER,
BOXNMA&iERER.
c A5, ARFSKRBESCENFEENSGH.

6.3.3 (EE O LR FFRE]

gne.3. VSRR, BAMTEZEHEORMREEN.

FIATEONREREE R
1. IS8R AEH (Incremental aggregation functions) :

o BHNAZSEEREORLMASER FiEMEAESERESMIANBOMTEXNZEH T
-2E
o IWERHBERIFEPETAEREZSERGEFIRMERAL
o TN BAIReduceFunctionflAggregateFunctionf#f 2L EERGREL
2. 28808&\E (Full window functions)

o EBMNRFME—EONMBTTR, HEtEMERREREIABITELER.
o EMNRMEFTEERZSTE, (BIVIEERGREGISESANEE.
o TXNBHIProcessWindowFunctionfiE— N2 EF R,

6.3.3.1 ReduceFunction

ReduceFunctioniZZ W/ MERXEME, FHiSCEASHE— I XEERME. SE—1Windowed
Stream_tfzFBReduceFunctioniE X AY, ReduceFunctiontEHERSEOTRITTE. BORFEEAN
HEER, CEIHRANREXEEERNE. YRKEFTTEN, EFaNEOEREarRSHIER
ReduceFunction‘E8 I TE=REHIRZ,

TEEMIF


af://n1845
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val minTempPerwindow: DataStream[(String, Double)] = sensorData
.map(r => (r.id, r.temperature))
.keyBy(_._1)
.timewindow(Time.seconds(15))
// HEIEIH 15 s & H I EME
.reduce((rl, r2) => (rl._1, rl._2.min(r2..2)))

6.3.3.2 AggregateFunction

AggregateFunction@—tbReduceFunctionEBRBIIE RSN, HEOEXNT

ik
* IN fgNKAY
* ACC SRINAREE (HEBIRES)
* OUT faith2RAY
*/
public interface AggregateFunction<IN, ACC, OUT> extends Function, Serializable
{
// BIE—NENERE RS
ACC createAccumulator();
// T R INES A — AN o ER R B BN
ACC add(IN value, ACC accumulator);
// THE R INAE KR R 45 R
OUT getResult(ACC accumulator);
[/ GBI
ACC merge(ACC a, ACC b);

5ReduceFunctionfAEIRIRZ, AggregateFunctionfIFRIEEHESEBIF S SEE! FARHEI TN EEL,

TEEMIF

// VPR AR IR AR SR S SR B
val avgTempPerwWindow: DataStream[(String, Double)] = sensorData
.map(r => (r.id, r.temperature))
// WiEid#korkey
.keyBy(_._1)
// 15T O
.timewindow(Time.seconds(15))
.aggregate(new AvgTempFunction)

// An AggregateFunction to compute the average tempeature per sensor.
// The accumulator holds the sum of temperatures and an event count.
class AvgTempFunction extends AggregateFunction

[(string, Double), (String, Double, Int), (String, Double)] {

// BRI, Ringsm
override def createAccumulator() = {("", 0.0, 0) // (ID, ZIn%s, il-%Ess

// A
override def add(in: (String, Double), acc: (String, Double, Int)) = {


af://n1877

(in._1, in._2 + acc._2, 1 + acc._3)

// RFE SRR (A
override def getResult(acc: (String, Double, Int)) = {
(acc._1, acc._2 / acc._3)

// G RN T
override def merge(accl: (String, Double, Int), acc2: (String, Double, Int)) =

(accl._1, accl._2 + acc2._2, accl._3 + acc2._3)

6.3.3.3 ProcessWindowFunction

ProcessWindowFunction2— Full Window Function, BE&EEONTE TR AR IR,
ZFR2NEFCE, BAE, CHHEERANEEN, thitEE0REIENPESE HIRESN
EER

Vi

* IN: BN

* QUT: HirHiZiAd

* KEY: BT

W HW HuHdE R

*/

public abstract class ProcesswindowFunction<IN, OUT, KEY, W extends Window>
extends AbstractRichFunction {

// KEOPAT I
void process(KEY key, Context ctx, Iterable<IN> vals,
Collector<OuT> out) throws Exception;

// T D EY R, JE L e PR
pubTlic void clear(Context ctx) throws Exception {}

// Context® Hi LK
public abstract class Context implements Serializable {

// RIEE O eEHE
public abstract w window();

// R8I HT AL F |
public abstract Tong currentProcessingTime();

// B4R R

pubTlic abstract Tong currentwatermark();

// State accessor for per-window state /& APIRA
public abstract KeyedStateStore windowState();
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// state accessor for per-key global state &4 /=R
public abstract KeyedStateStore globalstate();

// Emits a record to the side output identified by the outputTag.
// ToutputTaghiin HEIH & %10
public abstract <x> void output(OutputTag<X> outputTag, X value);

process() #l clear O FBE—MContextRIEASE, XNSETHEERREK
IpRIEATTEdEWIndowssEY)

o EHRIAIRRTEIFIKAIZ

o EESMELNNSHNEMRNERRE

o BORSREHMBEOAREHRZE
o 2RREITRTHER—ELHSMEOZEHEEE.
o Bl

TR ERTEORESX—Ih8EProcessWindowFunctionFEZ2EMclear()/57%, REBOHMERZE0
EEAEXNEOIRES.

TEEMIF

// output the lowest and highest temperature reading every 5 seconds
val minMaxTempPerwindow: DataStream[MinMaxTemp] = sensorData
// XHEkeyByHkeyf 2 FEH HProcesswindowFunctionf{KEYZER 2% —F
.keyBy(_.id)
.timewindow(Time.seconds(5))
.process(new HighAndLowTempProcessFunction)

case class MinMaxTemp(id: String, min: Double, max:Double, endTs: Long)

* A ProcessWindowFunction that computes the lowest and highest
temperature

* reading per window and emits them together with the

* end timestamp of the window.

* [IN, OUT, KEY, W]

*/
class HighAndLowTempProcessFunction extends ProcesswindowFunction
[sensorrReading, MinMaxTemp, String, Timewindow] {

override def process(key: String, // . iXHJ2{LREZKID
ctx: Context,// LR
vals: Iterable[SensorReading]l,// HifH4=ics
out: collector[MinMaxTemp]): Unit = { // #ii!

val temps = vals.map(_.temperature)
val windowEnd = ctx.window.getEnd
out.collect(MinMaxTemp(key, temps.min, temps.max, windowEnd))



6.3.3.4 252 & 5ProcessWindowFunctionZ&&{#H

REBERTRETEO LAZIBESILUERTHRERS, IS CRFERRNEOMNTERRIRS. AL

BEERESHREISProcessWindowFunctionZ5&1{E .

o SELEONTESGIZNRS,
o HBOMRLASEMAR, BANEREHEELProcessWindowFunction
o process()/7iARY Iterable SEUERIREEBEME, ANEERESNER.

fEDataStream APIFh, IXSCH_EIASFEANIRIZ 24§ ProcessWindowFunctionfEAreduce()zk
aggregate(VFiEHISEMEE, WTEAIRIEF=:

input
.keyBy(...)
.timewindow(...)
.reduce(

incrAggregator: ReduceFunction[IN],
function: ProcesswindowFunction[IN, OUT, K, W])
input
.keyBy(...)
.timewindow(...)
.aggregate(
incrAggregator: AggregateFunction[IN, ACC, V],
windowFunction: ProcesswWindowFunction[Vv, OUT, K, W])

TEFE—MIF

case class MinMaxTemp(id: String, min: Double, max:Double, endTs: Long)

val minMaxTempPerwindow2: DataStream[MinMaxTemp] = sensorData
.map(r => (r.id, r.temperature, r.temperature))

.keyBy(_._1)
.timewindow(Time.seconds(5))
.reduce(

// WETTHRMNRERE [IN, ACC, V]

(rl: (string, Double, Double), r2: (String, Double, Double)) => {
(rl._1, r1._2.min(r2._.2), rl._3.max(r2._3))

L

// TEProcesswWindowFunctiont il 4 iy 44t
new AssignwindowEndProcessFunction()

// [v, ouT, K, w]
class AssignwindowEndProcessFunction extends ProcesswindowFunction
[(string, Double, Double), MinMaxTemp, String, Timewindow] {


af://n1913

override def process(
key: String,
ctx: Context,
minMaxIt: Iterable[(String, Double, Double)],
out: Collector[MinMaxTemp]): Unit = {

// BUF A ME—— oo

val minMax = minMaxIt.head

// TR SCHRELE R 45 R (]

val windowEnd = ctx.window.getEnd
// Tt

out.collect(MinMaxTemp(key, minMax._2, minMax._3, windowEnd))

6.3.4 HEXENASEF

HEFFinkfIABEEOSERS EXMEASFILUEMFSERER. ERNRGEEESANEE, B
AILABENEOET. DataStream APIXIYMRE 7T BEXEOSEFEOMSL. FRILSHECHS
BogS(assigner), filA g8 (trigger)1BBRE&(evictor), BN LAIE—TRENEOHEL, MILUABASH
— M EEXEOEF.

S RRIXE—EOET, EHEEEEEOSESR. %S ERBRSRE TEBEHNEEN/IE
A. MRXMEARAEFE, HeEZeE.

MRBENEFERETIRERSEY, NWSURSHRITER, FREREFEAEOMNKS. WRE
NEFRARBIRERSHEY, VWSHtHmEBME— N AXEFEMEEN S ET=IListState £,

B TTEKMIE—EON, eBHEEEZEONMAR. MAREX@IRITEDOE. @
EREORERE.

RERIMEERSRABREORY, REFORMNARE, MARRIMTARKKRSLIT=/M
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L Ell

OO.. WindowAssigner
L[]

Im.lggn_aganon
NMRETARETHERAEY, VAR L
getResuTt() BHILAIEALE, — )

A4
vindow @ window @ winiow O
o

—=—=——p{ Windowhssigner

v

MREFHEET ProcesswindowFunction (£
EEO5EL) , APAIZEREM process O B#IER
HrHER

Full Window Function F——

0008 i
|
Incl.mg(lt.%g:tbn
RS HRETEEEARY, YRELEE0 \
F, NEARSEaE AL EEOREH L !
BUER, (BURT63.3.405%5) L) Lpp] ef
v {

Full Window Function

BIREE— akBE, TTLERARProcessWindowFunctionZBisiZFiEN. RIS LAME IR
BRETCEERSRETTE. FACBHETER, URBEREEEEERSRHAIBER MEAE
(BETHERGRHRE, WHNCRIBERSERT, B TZESEUtEERTER) .

TEHAEER T IMEASHEIXN M BNSMEY, KERBEXEF

stream
.keyBy(...)
window(...) // specify the window assigner #&5xhcss
[.trigger(...)] // optional: specify the trigger #5Eflkas
[.evictor(...)] // optional: specify the evictor f&E#Kkes

.reduce/aggregate/process(...) // specify the window function &% KL

s, ZHIRBEIUERE trigger B, FlinkSRHA—NEOAR trigger , ESERARBMZEIEOGA
FRETRRE



6.3.4.1 EORYSEREEHE

ERTH, BAEHEEONEGES——@RelE, RiLEREm, MRmR.

6.3.4.1.1 (IAIEIEE

SEOSERRAFENEASRE—I RN, fatliE— 150, BAit, —MEAEPEs— &

6.3.4.1.2 LSS 4HRE

—MEOBRU T AREPRSERN:

RE g
BOW NERBOEFBLE 7 ReduceFunctiongAggregateFunction, NMBEONBZELSILERES
= LR, NREOBFEE 7 ProcessFunction, MIEORNSE SR EAEORMNTER

BODEKREEED. — P EHEIMEANR. EOEFRBERENNSI TR TS

zuw A, FEONSPRERTRAEONEE. S EONSHE— SR, ©
Y T AT B O R A S R,

MEE T

e CTMERRBERANG, LUEERER A

Rk e

REE  MARSRTUEMERHNEINED. 8MENEEXRS. XSt Hil&=RE
B H, MARHEOET4HR.

6.3.4.1.3 {FASHRIEG

BOEF2EEOSRMIEREOXNSRAERTERE OMEREO.

mEr—rEOR, BORF2BaiEEk BORSAEZFEONSR, EF2iER BEXMEHASIM
RERitRd=E. Fit, AR=[OESEH trigger.clear O FiEKRIEXY:, LIBAILIRES R,

6.3.4.2 O e

WindowAssigner B REFEIERITTER S ECLE LR .
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THEEES windowAssigner 3ZORJERRD

[/ T WHRTRER

// Wi B onE 2

public abstract class wWindowAssigner<T, W extends Window> implements
Serializable {

// Returns a collection of windows to which the element is assigned

// RIBITGER TR B AR DS

pubTlic abstract Collection<w> assignwindows(T element,
Tong timestamp,
windowAssignerContext context);

// R B AS BRI ik 28 O T3 130 B U8 e ik #5115 )
pubTlic abstract Trigger<T, W> getDefaultTrigger(StreamExecutionEnvironment
env);

// Returns the TypeSerializer for the windows of this windowAssigner
public abstract TypeSerializer<w> getwindowSerializer(ExecutionConfig
executionConfig);

// FIBEXANE 153 A A8 12 AN 2 4B 1)
pubTlic abstract boolean isEventTime();

// @HSEHER BT
public abstract static class WindowAssignerContext {

// R[] HT AL B ]
public abstract Tong getCurrentProcessingTime();

THEENMIBEX — M EOSER

/** A custom window that groups events into 30-second tumbling windows. */
class ThirtySecondswindows extends WindowAssigner[Object, Timewindow]

// E@ARSE

val windowSize: Long = 30 * 1000L

// S
override def assignwindows(o: Object,ts: Long,
ctx: WindowAssigner.wWindowAssignerContext):java.util.List[Timewindow] = {

/7 THELFTJE B BT AR I ) 0 25 SR [

// rounding down by 30 seconds

val startTime = ts - (ts % windowSize)

val endTime = startTime + windowSize

[/ BEI—AFIFE, BB TC R A HT TR I

// emitting the corresponding time window
Collections.singletonList(new Timewindow(startTime, endTime))

// FRECER I fik 35
override def getbDefaultTrigger(env: environment.StreameExecutionEnvironment)
: Trigger[Object, Timewindow] = {



// BEER[E—N AR A fil R A
EventTimeTrigger.create()

3

// EOFEILRE

override def getwindowSerializer(executionConfig: ExecutionConfig)
:TypeSerializer[Timewindow] = {
new Timewindow.Serializer

}
// fEF R A ERE A

override def isEventTime = true

6.3.4.3 il =E

ez X T MR TEOHEAREER. MASRTLURERBEEISENESRRMAIA. fINgTE
FRIEEORIBOA AR, SRRSO EBTEOSRAO R ERET, BARERSH
K.

R ERRITIRERE R, ERLUDRRREAHIRS, FERLUERIRE.

BRABMAERSEN, CESER— TriggerResult R EBAMIZAZEtA. TriggerResultB] LAENLA
™EZ—:

TriggerResult faig
CONTINUE HAEBAE

NRBFOFFBCE 7 ProcessWindowFunction, UEREIZREGTEHAL

FIRE
#R, IRBOREETINERAHRY, ISRHEREER.
BORBSEH<eER, BOSWEMER. s,

PURGE ProcessWindowFunction.clear() /3£ A LB BENX SN ED

FIRE_AND_PURG  BE4itE&EORLR), AEMBRFrEIRSINTEdE(5R).

THRER— TR OIRS
public abstract class Trigger<T, W extends Window> implements Serializable {

[/ EHA RSN E O, XA RS R A

// called for every element that gets added to a window

TriggerResult onElement(T element, Tong timestamp, W window, TriggerContext
ctx);

/) 24— AR FRS A fh o s R
// called when a processing-time timer fires
public abstract TriggerResult onProcessingTime(long timestamp,
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W window, TriggerContext ctx);
/72— AT R S ik I
// called when an event-time timer fires
public abstract TriggerResult onEventTime(long timestamp,
W window, TriggercContext ctx);

// RBIfR 2R SRR A
// Returns true if this trigger supports merging of trigger state
public boolean canMerge();

// HEANEOTREGHMRAH, 2% Rk 3% PR 6 3

// called when several windows have been merged into one window
// and the state of the triggers needs to be merged

public void onMerge(W window, OnMergeContext ctx);

// BEANTESE A G DRI, BN A%IE bRl 8 3 g S Rl

// Clears any state that the trigger might hold for the given window
// This method is called when a window is purged

public abstract void clear(W window, TriggerContext ctx);

// HTAlR IR TR SO 5
// A context object that is given to Trigger methods to allow them
// to register timer callbacks and deal with state
public interface TriggercContext {
// SREHT AbER IR [A]
// Returns the current processing time
Tong getCurrentProcessingTime();
// IRECHTIARAL 2
// Returns the current watermark time
Tong getCurrentwatermark();
// A AL BER R TH
// Registers a processing-time timer
void registerProcessingTimeTimer(long time);
// TEEEEAR I R I g
// Registers an event-time timer
void registereventTimeTimer(long time);
// TR A B B ) B
// Deletes a processing-time timer
void deleteProcessingTimeTimer(long time);
// WBETR AR ) T 2
// Deletes an event-time timer
void deleteEventTimeTimer(long time);
/7 SREL—ANE O fil o 2% BEAE AN /T L BIRESX R
// Retrieves a state object that is scoped to the window and the key of
the trigger
<S extends State> S getPartitionedState(StateDescriptor<S, 7>
stateDescriptor);

}

// HFonMerge i tHsk R X
// Extension of TriggerContext that is given to the Trigger.onMerge() method
public interface OnMergeContext extends TriggerContext {

// Merges per-window state of the trigger

// The state to be merged must support merging

void mergePartitionedState(StateDescriptor<S, 7> stateDescriptor);



ERERRERIITR: KSEENSHIAS

1. IRSEE:

o EftAREEHRFERBEEORESN, FSERFRENREONERBRZIAS. B, EFEiEan
[EFRFRRBS AT,
o ATHEMMRBEORTSMRIENRE, M&EMclear)HiZEEMERFAEREENXMNEEIRTS,
F{HEFTriggerContextX S MIBRFAAETAIZE.
2. Bt AR

o EAMESHAINE, —EEITEH MASRIBEENIAE(onMerge()

TEBAE—BEEXRARRIIGT

/*F SRR LI A — IO ERI M A F/
class OneSecondIntervalTrigger extends Trigger[SensorReading, Timewindow] {

// AEEAFA
override def onElement(r: SensorReading, timestamp: Long,
window: Timewindow, ctx: Trigger.TriggerContext): TriggerResult = {

// firstSeens&—/BooleanZEAIfIRA, ¥IiAE Nfalse
// firstSeen will be false if not set yet
val firstSeen: valueState[Boolean] = ctx.getPartitionedstate(
new ValueStateDescriptor[Boolean] ("firstSeen", classof[Boolean]))

[/ HEAFREN, M S
// register initial timer only for first element
if (!firstSeen.value()) {
// compute time for next early firing by rounding watermark to second
val t = ctx.getCurrentwatermark + (1000 - (ctx.getCurrentwatermark %
1000))
// EME AR, AR+ 1s
ctx.registerEventTimeTimer(t)
// FEMEE AR RS, AT RS R R A
// register timer for the window end
ctx.registereEventTimeTimer (window.getEnd)
// FHifirstSeeniki Ntrue
firstSeen.update(true)
}
// Rl Continue, &= EAHAHABAMN
// Continue. Do not evaluate per element
TriggerResult.CONTINUE

/7 AFEALEES T AR AR, IR AN T T
override def onEventTime(
timestamp: Long,
window: Timewindow,
ctx: Trigger.TriggerContext): TriggerResult = {
// UG OB AE S A RS I g
if (timestamp == window.getEnd) {
// BATVHEIE BIERRE O
// final evaluation and purge window state



TriggerResult.FIRE_AND_PURGE
// WR+1s i 2%
} else {
// register next early firing timer
// FEEMTE AN, g +1s
val t = ctx.getCurrentwatermark + (1000 - (ctx.getCurrentwatermark %
1000))
if (t < window.getEnd) {
ctx.registereEventTimeTimer(t)
}
// BT
// fire trigger to evaluate window
TriggerResult.FIRE

/7 AR BRI SR Ak, X AN ERE A, s A
override def onProcessingTime(
timestamp: Long,
window: Timewindow,
ctx: Trigger.TriggercContext): TriggerResult = {
// Continue. We don't use processing time timers
TriggerResult.CONTINUE

// D ERMERR, XA TTERE A, BT EF G rstSeentk®E

override def clear(window: Timewindow, ctx: Trigger.TriggerContext): Unit = {
// clear trigger state
val firstSeen: valueState[Boolean] = ctx.getPartitionedsState(

new ValueStateDescriptor[Boolean] ("firstSeen", classof[Boolean]))

firstSeen.clear()

6.3.4.4 I2iR28

FFinkpIEOHES, BIRBE— N UEAN. STLEENRGTEZrsZE HREOPMTE.

TERERT Evictor FEOMIRED

public interface Evictor<T, W extends Window> extends Serializable {

// Optionally evicts elements. Called before windowing function.
void evictBefore(Iterable<Timestampedvalue<T>> elements, int size,
W window, EvictorContext evictorContext);

// Optionally evicts elements. Called after windowing function.
void evictAfter(Iterable<Timestampedvalue<T>> elements, int size,
W window, EvictorContext evictorContext);
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// A context object that is given to Evictor methods.
interface EvictorContext {

// Returns the current processing time.

long getCurrentProcessingTime();

// Returns the current event time watermark.

long getcCurrentwatermark();

6.4 Joining Streams on Time

R RES, —MNERAYESKZconnect or join the events of two streams, FlinkAgDataStream API
RETRINHRENEF: Interval join 1 Window join, AT, HiTEEAXFAINEF.

6.4.1 Interval Join

Interval JoinXd TR MREERNE, HEKILZ ENMEERE REdiEErEEIISE4HEToin
ES U

TEIZTHIMZRANB, BHEENSEHSAPI—LESEoingd, RIFFBRINT

o LIBHREANEHAESH

o MARRERARLARI T ESY, RIARIAIRE— 14, +15minSEEIRRIEM

o BXLEMAjoinpiEMYY, k—ELE. WITENaEHIbEMNSENEMT, aSEHcEHD
SEREHRS

1210:00 13:00:00
Stream A

Joined stream

11:20:00 12:15:00 13:15:00

Interval JoinfIAPIERZRNT

inputl
.keyBy (.) // fu&HEIX
.between(Time.hour(-1), Time.minute(15)) // fRxEE L
.process(ProcessJoinFunction) // JOINRGINFAFR; S KRG XA REL,  the e hb i
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6.4.2 Window Join

ZRENX, Window JoinEEFFlinkfIEOMNGIR. A MINRNTREELEER—NM2HEEO, H
EXANE O EESTh AT T X aRFRE R, SARRZLEProcessjoinFunctionit&,

TEmiEan FERTR

Input 1

0000,
0000

WindowAssigner

Input 2

L 1

)
Window OO Window OO@ Window O

Coe Q0O oo

Trigger Trigger '» Trigger

FERfEENT

Join Function

s MMANTEHRECIISENREEHTHE,
o AHEOSEIBEANRNBARSZIAHED, XERELAHEORNEFHEREAFRBARLN

.

o LEMOMMELRMER, HIFMINRFIE N TRAS (X5FFR) ARJoinFunction,
o IHNATTLIBENX AR, AT XA NSRRI ZERNED S, FEititg=Ri0%
BRERET S EMENE F PRI AR T H7 28R,

TEREERAIVEAFERIXAPI

inputl.join(input2)
.where(...)
.equalTo(...)
.window(...)
[.trigger(...)]
[.evictor(...)]
.apply(C...)

//
//
//
//
//
//

specify key attributes for inputl #EE% —&UifkeyIRZs
specify key attributes for input2 #&ESE FhifkeylRz
specify the windowAssigner &5 & [/ 2s

optional: specify a Trigger f&&Efilk 2% (Al LAIATEE)
optional: specify an Evictor {RE#IRe(TTLAARIRE)
specify the JoinFunction #55EAbHH R %L
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B&TJoinz4bh, EAILAMERcogroup(). JoinFlCoGroupf R NBSIEEMBIIAY, JoinXt KRB MANKE
—XIE4 AR oinFunction, MCoGroupXI&E A MEENFSIRNEHEFEAGroupFunction,  (tBHEL
BIRSHAR)

6.5 AL IFRFIENE

BHSEHEEREFRENTHIECERRN AXAEFHNEH. EFHNREEARFXMERT, MR
SHEAHF, EREEHSESESEE T EBE&RR THRENED (hMEFFIUKIEES T
BORESRMBENER) |, WixSHHEREE.

DataStream APHE{ T =F4aMEREIEHNSE:

e Dropping: EERIEFIREIEM.
e Redirect: §IREISHEEMFRIBASTF.
e Update: {RIEIREISHEINTESER, FERHER,

TE=/NMD M BX=FMER

6.5.1 EFIREIH M (Dropping)

EBREISMRERTEMEEF. XBESHEEONRIATA. B, BRENTEREFASEIZ2
EM.

6.5.2 EEMIRZEISH(Redirect)

IRESEAT LMFE AR B EERZS— M DataStream, XHFFH AT LURIE SRR RHITEFHAR
GBSV

TEEMIF, RBNTSEREHEERZIEE S

// MFEIEFE R
val filteredrReadings: DataStream[SensorReading] = readings
.process(new LateReadingsFilter)

// B E
val lateReadings: DataStream[SensorReading] = filteredReadings
.getSideoutput(lateReadingsOutput)

// WIEWRHATES print the filtered stream
filteredReadings.print()
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// SfElE AT R S4B print messages for late readings

TlateReadings
.map(r =>
.print(Q)

*** Jate reading *** " + r.id)

/** A ProcessFunction that filters out Tate sensor readings and re-directs them
to a side output */
class LateReadingsFilter extends ProcessFunction[SensorReading, SensorReading] {

override def processElement(
r: SensorReading,
ctx: ProcessFunction[SensorReading, SensorReading]#Context,
out: Collector[SensorReading]): Unit = {

// compare record timestamp with current watermark

if (r.timestamp < ctx.timerService().currentwatermark()) {
// this is a late reading => redirect it to the side output
// IBF A E A B E
ctx.output(LateDataHandling.lateReadingsOutput, r)

} else {
// IEE BT E A
out.collect(r)

6.5.3 BEFRFIHHEHLEE(Update)

BMREBEENNTEERAAKHEH. B, ATEBENTENENER, FESE LR,

* XFfUpdateREBRIBEFREEF RERRLE REFETERENERE.
» TREFIIMNBRSE sEBLIEE T XLEH.

O8FAPRRM T —NAEREXFIRRE L IBREIH G, EFERSEEEEON, JLUSE—
NEIMNORTEIER, FRAIEIRBZE (allowed lateness), BiE TiZEMNBEOARASHEZING, TTESWE
REEFERAZ EEMER.

TEENMIF, KEEERBREEAER

val readings: DataStream[SensorReading] = 777

val countPerlOSecs: DataStream[(String, Long, Int, String)] = readings
.keyBy(_.id)
.timewindow(Time.seconds(10))
// process late readings for 5 additional seconds ¥ EIEiR%AZ)JE H5s
.allowedLateness(Time.seconds(5))
// count readings and update results if Tate readings arrive
.process(new UpdatingwindowCountFunction)

/¥ # XA A PR A 2SR F Updat e S Ab 38R 21 A /
class UpdatingwindowCountFunction extends ProcesswindowFunction[SensorReading,
(string, Long, Int, String), String, Timewindow] {
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override def process(
id: String,
ctx: Context,
elements: Iterable[SensorReading],
out: Collector[(String, Long, Int, String)]): Unit = {
// count the number of readings
val cnt = elements.count(_ => true)
// EARE AR 5 2 B IR E
val isUpdate = ctx.windowState.getState(
new ValueStateDescriptor[Boolean] ("isUpdate", Types.of[Boolean]))
if (!isupdate.value()) {
[/ BUGHEIER AR
out.collect((id, ctx.window.getEnd, cnt, "first™))
isUpdate.update(true)
} else {
/] AREE, R
out.collect((id, ctx.window.getEnd, cnt, "update"))

B7E ARSEFHIRA

REHEFR—RNE FREEFEROEEE. FinkiNITZRBRISEEREF. BIBRNSECEEEK
SHY. fan:

o BOEFHProcessWindowFunctionIEEMNFEEL JIReduceFunctionffIFR SR
e ProcessFunctionFEE(R#FiTAIEE
o —LHIRC REEEHIFESIRS

BRTABNETF. HERE. BUBLCZI, FlinkfgDataStream APIRIRM T —L42, BFEBRRBAENX
B#i#(user-defined function)+iEfft. #EPFIER RS,

AEERNMA

1. MAIERFPEXHRHPEXFRXBNREASZRE.
2. BRI e RS E AN M= E R EPIR SR ).
3. &a, HMNBEFRNTHERNSEENTEIRS, UIRANEINININERERFLRE.

7.1 SEIMBIRESEREL

RECERRFPSEEROIRE: RS (keyed state)fIEFIKES(operator state), AT, FEiIE—NA
YMAISCIl BB SIS HIREFI R E FIRSHIREL.
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7.1.1 8RS

FIF BE X REE LA EMRY_E N X P EFEFIGE SIRAYRIRES. Flink&oidrprosMEER 4R —
MABES, XELHISHHEEFIBLHITES L. OHERREFIEREFRISMHTESERER
R — TR, FEPFE MR MRAVERMIRESER. Eit, FBINSIEERUTPhUEEIRE
(distributed key-value map),

KSR BERI AfEKeyedStream |,

Flink ABBIRSIRA T 2 MRSIRE. KSREENX 7HERME DINSSEFIRVEMEEN. FlinkSTHFLATIR

SIRIE:
WSIRE

ValueState[T]

ListState[T]

MapState[K, V]

ReducingState[T]

AggregatingStatell,
0]

ik

RERBLATHIEE/ME. PTLAEIL valuestate.value ) SRIREY, Bid
valueState.update(value: T) SREEHf

RIFEEUATRITTERIIR. SfFadd, addAll, getZFE(E., BEARZHIRY
AN TTREMRR, ErJLUEE update 75iERFFFIRERIFERATIZER

RE—TRINERE. ZRERH TS ava MapZORIERTE

BFESIRE, SlistState[TIHIAPIAZELL. EEETEHadd)SZE]
fEAReduceFunction®R&1E. FHEEMget)HERSRE—E(ET
= XMERERSER

FiAggregateFunctionB&1{E

TEEMIF., NRERSFNENEERS DXNELSKAETBIEERNZN, RFINBEFEAHE

wREH.

object KeyedStateFunction {

/** main() defines and executes the DataStream program */
def main(args: Array[String]) {

// B EEA

val env = ...

// A E AT

val sensorbData: DataStream[SensorReading] = ...

// Jiirkey

val keyedSensorbData: KeyedStream[SensorReading, String] =
sensorbData.keyBy(_.id)

// *tkeyedstreamiifflatmap
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val alerts: DataStream[(String, Double, Double)] = keyedSensorData
.flatMap(new TemperatureAlertFunction(1l.7))

// print result stream to standard out
alerts.print(Q)

// execute application
env.execute("Generate Temperature Alerts")

/:‘: %
* The function emits an alert if the temperature measurement of a sensor
changed by more than
* a configured threshold compared to the last reading.

s

* @param threshold The threshold to raise an alert.
~,':/
class TemperatureAlertFunction(val threshold: Double)
extends RichFlatMapFunction[SensorReading, (String, Double, Double)] {

// RRAE E—RE RS
// the state handle object
private var lastTempState: ValueState[Double] = _

// WIEA AR
override def open(parameters: Configuration): Unit = {

// create state descriptor BJE— /RSB
val lastTempDescriptor = new ValueStateDescriptor[Double](
"TastTemp", classof[Double])

// obtain the state handle #IMHLHIRI E—UEE REHEH
lastTempState = getRuntimeContext.getState[Double] (TastTempDescriptor)

// BRI R EL
override def flatMap(reading: SensorReading,
out: Collector[(String, Double, Double)]): Unit = {

// fetch the last temperature from state MURASTER| E—IkATIEE

val lastTemp = lastTempState.value()

// check if we need to emit an alert it®E=E(Y

val tempDiff = (reading.temperature - TastTemp).abs

// WREEELBE, R

if (tempDiff > threshold) {
// temperature changed by more than the threshold
out.collect((reading.id, reading.temperature, tempDiff))

}

// update lastTemp state IR
this.lastTempState.update(reading.temperature)



TEXIPIF RN E R TR

o FRIE—MNRBUWR, BRI FEIRIchFunctionfiJRuntimeContext@FlinkiEM—MASHER
3.

o BMRSEIEEE B CHFENRSERT, MATPEBIKSHBIRINSIEIESE. 5
0, val lastTempDescriptor = new ValueStateDescriptor[Double]("lastTemp",
classof[Double]) F, REEFIEValueStates B CRIASHIARTE
valueStateDescriptor , FINBITIRMAINSHIZBIR 1astTemp FIAZSHIZEEY Doube 5L
ISR R,

o ReducingStatef]AggregatingStatefiRFFELHILAHAEEMIME M
ReduceFunctiongAggregateFunction3 NI NIZKSHNEHITES.

o BIIEMEZ MRS, LM REREEAE Z MNSSR

o FAFInkFZCESENRFIILEE, FRLIEAFT R SEELIERE. (ARIEREHEERT

classof[Double] )

o —RIBKSEIRAFREIEFTHNRREE. AR, IRESIBSEopen(BiEPHMME. Fla0, BIE
7B TastTempstate X MASHAERA T XHIMREE, FHETE open( FHiEH
lastTempState = getRuntimeContext.getState[Double](lastTempbDescriptor) , BEE#]

|,

L—PRECEM— ISR, Flink&ERERIRTRESEBIXINTHATINAPRE. M
MERSERFIEMNMAMFREMRAN, TEaREIMEE. EXFEMERT, FinkEHSEmEmMIv
&5 | BRSNS iR R ERNIRERE. WRERE, FRISIRaz,

LtE5h, FlinkAPIARRME Y —MEREIEIEE, BARXMEESASTIS LEZERRAIINEE,

val alerts: DataStream[(String, Double, Double)] = keyedData
.flatMapwithstate[(String, Double, Double), Double] {

// I —ANFARRA MBI GXAENT LR E 22 PR

// B—ASHUE TS

// HEASEOE PR (F11nke MG i R B HDIRZS H R T 2X 8D

// FB—AREMEZT1atMapf s Ry

// AR BME R A S FPRAS (FT114 nkeas X AME RN 5 i P PR A3 T B 5T

case (in: SensorReading, None) =>{
// no previous temperature defined; just update the last temperature
(List.empty, Some(in.temperature))

3

[/ MEEAESE—AHOERIARBOL CER AT, X E G D
case (r: SensorReading, lastTemp: Some[Double]) => {
// compare temperature difference with threshold
val tempDiff = (r.temperature - TastTemp.get).abs
if (tempDiff > 1.7) {
// threshold exceeded; emit an alert and update the last temperature
(List((r.id, r.temperature, tempDiff)), Some(r.temperature))
} else {
// threshold not exceeded; just update the last temperature
(List.empty, Some(r.temperature))
}
}
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BNEFRIHTESEERFRES. £EFIIE—FHTESPRIBNRESMERA LUBEHERFVAE.
FlinkSzis=MEFIRE: JIRRE. BREFIRNSLARS BIRE.

WIBRECTLUETSER Listcheckpointed EOKEEFIRIAS. BMERHYSBEFRSIIEER
BIRERTEFRLI, AAfSiBidListCheckpointiZHHIM M EEEL SNSRI ZH:

TE*REEListCheckpointediZAYIRERD
pubTlic interface ListCheckpointed<T extends Serializable> {

/7 DAFIZR T 20k (8] — A B HOIR A B P
List<T> snapshotState(long checkpointId, long timestamp) throws Exception;

[/ MREAGEUEHIFZ R E R HCRTS

void restoreState(List<T> state) throws Exception;

TERIBFMIF, CBRTITA—NREELHIListCheckpointiZ O, ZRENEFHENFHTES
FEtREEIT B E

class HighTempCounter(val threshold: Double)
extends RichFlatMapFunction[SensorReading, (Int, Long)]
with ListCheckpointed[java.lang.Long] {
// RECHAMES MR G
private Tazy val subtaskIdx = getRuntimeContext.getIndexofThisSubtask
// AHTHEES CHRTES P ARRE)
private var highTempcnt = OL
// SCERRREL, BRI I B AU A T AR+ 1
override def flatMap(
in: SensorReading,
out: Collector[(Int, Long)]): Unit = {
if (in.temperature > threshold) {
// increment counter if threshold is exceeded
highTempCnt += 1
// emit update with subtask index and counter
out.collect((subtaskidx, highTempcCnt))

PSRRI PR, XA bR 2 T8 AR ok 25 it B 1
* @Param chkpntId: % f%S
* @Param ts: JobManager8!EAGIN A i ARk
* @Return AR —A TR AR A
Z
override def snapshotState(
chkpntid: Long,
ts: Long): java.util.List[java.lang.Long] = {
// snapshot state as Tist with a single count
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java.util.collections.singletonList(highTempCnt)
}
/ %
* AT REARIRE, XA REAEWI A1 R ECRAS B 4R
* @Param state: MXAFIRFEAFNAHIRGE
*/
override def restorestate(
state: util.List[java.lang.Long]): uUnit = {
highTempcnt = 0
// restore state by adding all Tongs of the Tist
for (cnt <- state.asScala) {
highTempCnt += cnt
}
}
}

7.1.2.1 AT ZEEEFIRESEFIRFLIRE?

B LN, EAsEREAT AR FIRSIEIREIIRTIZE a list of state objects)iLIE, XZEHE
JListéEHE SFEHE FNSHRERIFHITHE. NTEMER>CEEEFREHRERFTTE, FE
BEFRSENDEAESHEDIESLA, XFESBHEH KSR, M—AKR, FIRELLE
MEEIES FEMSH

BIFRERSSIIFR, BEEEAIRSHREATLAFER snapshotstate ) #1 restorestate() J5iA3L
TILBEE,

e snapshotstate() HiEEAMETFIRERBASNED

e restorestate() JIAEAMETFIRENZS N EBoBEEREK

L NEFRESHIKER, 2RSS NS EFHREHTESY, A
restoreState()755%.

MRHITESLLRENR £, LABEES BN IEAZIRE, IPAfEArestoreState()/5i%
B, ASHEN ZFIE.

B4, FAIBEAFMIIFRE java.util.collections.singletonList(highTempcnt) , XBJREFELE
T ERSEBIMESIREREMITE, FIBIIBS0E—TXANAE, WS

// S EERAETTANFRIRAS, DA LR B 240 A ) B8 47 b 43 A
override def snapshotState(

chkpntid: Long,

ts: Long): java.util.List[java.lang.Long] = {

// split count into ten partial counts
val div = highTempCnt / 10
val mod = (highTempCnt % 10).toInt
// XA AT B TR A0y, R B0 FIR
// return count as ten parts
(List.fi11(mod) (new java.lang.Long(div + 1))
++ List.fi11(10 - mod) (new java.lang.Long(div))).asJava
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7.1.3 (EHEET 1#E1K7&(Using Connected Broadcast State)

RNAHRR— T EILBREFHERNER SR EFIMBEHTEST, FREFEATIRERSH
1THER.

BIgn, —AFUNFRAT—MRETIX MR SR, I:l £ connect X MANIR. EFEEEN
NSRAIERTE RS, RIFNFESMNREATT 178, RILAEGMESRAMES BRI E!
A, EBFEIX ARSI S

EEREERENMIF, EENILHAN Bk SHRERENRERERS

object BroadcastStateFunction {

/** main() defines and executes the DataStream program */
def main(args: Array[string]) {

// set up the streaming execution environment
val env = ...

// ingest sensor stream
val sensorData: DataStream[SensorReading] =

// define a stream of thresholds

// EX—ABUARR GG, T2 7, X0 DS E D

val thresholds: DataStream[Thresholdupdate] = env.fromElements(
Thresholdupdate("sensor_1", 5.0d),
Thresholdupdate("sensor_2", 0.9d),
Thresholdupdate("sensor_3", 0.5d),
Thresholdupdate("sensor_1", 1.2d), // update threshold for sensor_1
Thresholdupdate("sensor_3", 0.0d)) // disable threshold for sensor_3

// FER#T I key
val keyedSensorbData: KeyedStream[SensorReading, String] =
sensorData.keyBy(_.id)

// BIE—T RS HRA (— MRS HIARR

// %5 R"thresholds"

// BERZETEString

// 1EI2EEDouble

val broadcastStateDescriptor = new MapStateDescriptor[String, Double](
"thresholds",
classof[string],
classof[Double]

// AR AEEATFRRS IR R RO — A R
val broadcastThresholds: BroadcastStream[Thresholdupdate] = thresholds
.broadcast(broadcastStateDescriptor)

// KGR RS )RR, JF HLATH Ab 2 R Hab 31
val alerts: DataStream[(String, Double, Double)] = keyedSensorData


af://n2248

.connect(broadcastThresholds)
.process(new UpdatableTemperatureAlertFunction())

// print result stream to standard out
alerts.print(Q)

// execute application
env.execute("Generate Temperature Alerts")

}

case class Thresholdupdate(id: String, threshold: Double)

/~,':~,':
* Wb PR H R B se P KeyedBroadcastProcessFunctioniz i, EAMUANEAISH
* The key type of the input keyed stream.
* HR RN E (The input type of the keyed (non-broadcast) side.)
* R CERMZEA (The input type of the broadcast side.)
* 2R
*/
class UpdatableTemperatureAlertFunction()
extends KeyedBroadcastProcessFunction[String,
SensorReading,
Thresholdupdate,
(string, Double, Double)] {

[/ BUERSHIR T

private lazy val thresholdStateDescriptor
= new MapStateDescriptor[String, Double]
("thresholds", classof[String], classof[Double])

// ValueState[Doublelik#& H kA&7 L —ANEER
private var lastTempState: ValueState[Double] = _

// VIR R
override def open(parameters: Configuration): Unit = {

// Bl E— R RS R AT

val lastTempDescriptor

= new ValueStateDescriptor[Double]("TastTemp", classOf[Double])

// WRPEHIRFRYIE L —NMRERS

JastTempState = getRuntimeContext.getState[Double] (TastTempDescriptor)
}

[/ BB RRR A
override def processBroadcastETlement(
update: Thresholdupdate,
ctx: KeyedBroadcastProcessFunction[
String,
SensorReading,
Thresholdupdate,
(Sstring, Double, Double)]#Context,
out: Collector[(String, Double, Double)]): Unit = {

// TR SGREUT HRRAS
val thresholds = ctx.getBroadcastState(thresholdStateDescriptor)

// WMEAENREFREAET0.0d, B RS
if (update.threshold != 0.0d) {



thresholds.put(update.id, update.threshold)

} else {
// WMEAENPBENO0.0d, Bt AR EBIE 1, St E )RRt .
thresholds.remove(update.id)

}

// AEEIEE R FE A
override def processElement(
reading: SensorrReading,
readonlyCtx: KeyedBroadcastProcessFunction[
String,
SensorReading,
Thresholdupdate,
(string, Double, Double)]#ReadOnlyContext,
out: Collector[(String, Double, Double)]): uUnit = {

// AR HRRES
val thresholds = readonlyCtx.getBroadcastState(thresholdstateDescriptor)
// RE ey S B RIME, R )5 LR S e, R
if (thresholds.contains(reading.id)) {
// get threshold for sensor
val sensorThreshold: Double = thresholds.get(reading.id)

// fetch the Tlast temperature from state

val lastTemp = lastTempState.value()

// check if we need to emit an alert

val tempDiff = (reading.temperature - TastTemp).abs

if (tempDiff > sensorThreshold) {
// temperature increased by more than the threshold
out.collect((reading.id, reading.temperature, tempbDiff))

}

// EE L —NEE
this.lastTempState.update(reading.temperature)

}

T EERITG, BILRERE—T

* KeyedBroadcastProcessFunctionf7cRAMET AR RMTRA. F5iLprocessElement()f]
processBroadcastElement()24{HHY L T —N3HHES, — P RAENE.

7.1.4 {EfCheckpointedFunctioni%[]

CheckpointedFunctioniZQRIEERRSRHNVRREERD. CRHETHFHEKTMNLGEP BIRE
MEFRE, AERE—RIFHEEFIIRRERSERES R REF S TEEHRIREPRE)
YO,

CheckpointedFunctioniZzOENX TR N GIE, initializeState()fsnapshotState(),
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e initializeState()75iE7EIEECheckpointedFunctionfFHTFES AR, HEmNAREFSHTF
HIEMEFREENESE, MetE@HTESNMRARXANGZE. ZAEETRECKSHERERK
2

o EHERISE R ZHI, snapshotState()/5iE#HEAMA, snapshotState()5iEHBIRRIREIRERSE
RESERkZ Bl EMATEIRSHR (XHEMBERZFINAMIESIESHEFD) .

TEHEREMIF, XMIFRBEERRSHEFRES, RS RIS I EFISEEIERES
SR T ISR EE.

class HighTempCounter(val threshold: Double)
extends FlatMapFunction[SensorReading, (String, Long, Long)]
// FEszHlcheckpointedFunctionf#%
with CheckpointedFunction {

// AR, HRGE U HAE S R AE R RN
var opHighTempCnt: Long = 0

// BERES, FRGEAA LaTkeyiE i RAE AR E AN S
var keyedCntState: valueState[Long] = _

/7 FETRAS, FHRAE A 4 T AR 55 Rt 4 1 i B4
var opCntState: ListState[Long] = _

// ACHERE
override def flatMap(
v: SensorReading,
out: Collector[(String, Long, Long)]): Unit = {
if (v.temperature > threshold) {
// ARHA -+
opHighTempCnt += 1
// BEHERE
val keyHighTempCnt = keyedCntState.value() + 1
keyedCntState.update(keyHighTempCnt)

// emit new counters il
out.collect((v.id, keyHighTempCnt, opHighTempCnt))

// Wtk
override def initializeState(initContext: FunctionInitializationContext): Unit
= {
// initialize keyed state ¥J#AfbiEIRA
val keyCntDescriptor = new ValueStateDescriptor[Long] ("keyedcCnt",
classof[Long])
keyedCntState = initContext.getKeyedStateStore.getState(keyCntDescriptor)

// initialize operator state HJIfHfLE IR

val opCntDescriptor = new ListStateDescriptor[Long]("opCnt", classof[Long])
opCntState = initContext.getOperatorStateStore.getListState(opCntDescriptor)
// initialize local variable with state A T IRA R E AHAS B 1IH
opHighTempCnt = opCntState.get().asScala.sum

// P R TS RTS8



override def snapshotState(snapshotContext: FunctionSnapshotContext): Unit = {
// update operator state with local state {A<HAs ffif 7 AR B 5 B 5 TIRA
opCntState.clear()
opCntState.add(opHighTempCnt)
}
3

7.1.5 S B A 5SRRYEA]

HTRERIE, Flinkal ISEIEAEEFRIMRE. A, 5—1aXE, R EREERRBNMEZER
[=, MAXEASLF—HIRES. WF-EEF0R, NENEREE=MERESEMN. (fi,
SERBEIEE ARG E—EMEERIINBRFNEIE LU MR R HERERF A AHRICEIRICR,
DHRRE H ISR BN TASEMAREEE. )

QEMBEFISHRSHEINNENGESFMRAET, AESAEKN. Fit, 2BfJobManager g
RECEREEMI.
EEEKSE AT HERE F T LASEM CheckpointListeneri& [, X MEORMT

notifyCheckpointComplete(long chkpntld)/5i%, jobManagerffie—MEBRRINERE, Z5iE
SRR,

7.2 ABRSHM AR ESIERE

FinkBIStiEE_REIREEERSE, RNBEEAMEMEERIE, TR

val env = StreamExecutionEnvironment.getExecutionEnvironment

// set checkpointing interval to 10 seconds (10000 milliseconds)
env.enablecCheckpointing(10000L)

RERERUNRIEY 1 0s)SRMtGE R HLHE R IR A FHRE LA MRS IR S PR RORIE. S
A EREREFILEREESERENTE, ETUSEHERIIKE, RAFTEEHIEEEE

//I\D

Flinkigt 7 Btt—Lea] HHETROECEIRIN, tban

—H M REER RS ED—IRRTIERE
HREERNYE

FSRENH KR EE T E AR RS E
RS EIRHESRANELT
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7.3 BFRBIAS R BRI AT 4EP %

ELIET T JUBNNAIASTRERNES, EEXEEMTE. B, KNEETHNAEFEEE
—LeiER, tbaliESbug, NN, RESMIRINEE, SEREEFIHITES. Eit, SBIRKSER
HFRhR AN AR ES TR E S E OB HESRREER.

Flinki2tRFRREEHPN IS, BR, EEXRNRRPHEBISSERSEFEEERISE, LU
RIS AT LAE R th A N FRFE R

1. BFRIIE—IRRR
2. BAHITERHNETRIOEF).

BFHE—RARIRAFTEREWEIRERF, FEEN. WRIRRAMSHEAFHTEREN, WA
BEMLARIRYRE RER LA,

7.3.1 IEEEFE—tRH

Rz AN BB N EFEEE—RRAN. XMRRAFRRERTITEE. SNRERENNEER
Y, IRRATHARERTIPRSRGEZIEEINBIENEF. RAEAEEINAREFHNEFHIITA
FHERRY, FRERRERRSIKERIE].

IREHTINT, BRENFNRE

val alerts: DataStream[(String, Double, Double)] = keyedSensorData
.flatMap(new TemperatureAlertFunction(l.1))
// uidinik, HRWEIFATE
.uid("TempAlert™)

7.3.2 AERBRSHEFEXRKHITE

BFRAHTESHEN TEFENRINSHTHEIRT, FrAZREAME. ZHERY TH#IKS
MBEFILST REMRAFHTESE. (BA—MHTES EVEEG—MREESR)

THRTMIRERAFHITE
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val env = StreamExecutionEnvironment.getExecutionEnvironment

// RN B E K IAT

env.setMaxParallelism(512)

/] RETREBKHATE

val alerts: DataStream[(String, Double, Double)] = keyedSensorData
.flatMap(new TemperatureAlertFunction(l.1))
// set the maximum parallelism for this operator and

// override the application-wide value
.setMaxParallelism(1024)

MRBFEEMRFRBRERAHITE, UARBEE MRAIFTENRERE

o MEBHITENTETF128, VWERKHITEN128,
o WIRIZIBMEFAIHITEAT 128, MEAFITEITES Min(nextPowerofTwo(parallelism +
(parallelism / 2)),2A15),

7.4 BINSHABREEE R ST

BFERSHRREST N BREFIEE M (robustness)fIT%gE(perfermance), ELANERRS G, 1€
BEREENERE. RSN mETIERIMERE,

7.4.1 ERIRSEIR

KERIRASEE SMESHFRE, AENTRERISERANETEFHE. BTFARSTLL
ARSI THEHPIRER, RSEmEAEER(pluggable). FARMRARLIER FRRS
BIREHSREEFENIRIRE. REERINERTERNSNARFIITE It n. SHIRSREIR
R T IRSIRIBRYSEM, tinvalueState, ListStatefIMapState,

Flinkifit 7 =FMrRE /5

e MemoryStateBackend
e FsStateBackend
e RocksDBStateBackend

7.4.1.1 MemoryStateBackend(R7EztHI, BEEIR)

MemoryStateBackendiERSIEA BRI RIZ(ETETaskManager JVMHIZAIMHE L,

o fA8N, MapStatefjava HashMap¥igszis,
o BAXMAARHTIFERINESER, EEXNARFNEIITEERE.
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o WRESELHIKPRETTBAK, IVMIIEE LETHRBESLAITe=HET
OutOfMemoryErrorm#iRE.
o ItHh, XMITIARIRe IR ENLE{S(garbage collection pause)jalf, EABKITEK
HIFERIXI SRt L.
o HARKEE SRR, MemoryStateBackendiGIk&&iXLS/obManager, JobManageriSEH{FfETEE
AER, BElt, NEEFRNERSSAES)obManagerfilE. EAEHNREESLMRN, AL
ffJobManager KMAYER FE2EXIRE.

o HTFXLPRSEI, MemoryStateBackend{UEZFRATHEMIRIXEN.

7.4.1.2 FsStateBackend(FHIASERE, KRESSIEZW)

FsStateBackendfETaskManagerfJJVME_EEERMIRTS, Hii&MemoryStateBackend—#,
#AM, FsStateBackendZH T, MERRKEEATEFIAMRE.
FsStateBackendiZft 7 ITFESIEERBINI A HBIRFIF A AR RTHMIESIE.

B2, B%ETaskManagerIEA/NRIRS, ATReHIEIRIKEE S,

7.4.1.3 RocksDBStateBackend (&SR 4k, ISESHIFRL)

o RocksDBStateBackendiEFrE RS (EZ A HRocksDBELfH,

¢ RocksDBE—MRALFEFE, TISEUESANEIAELER. 797 MRocksDBIESHIE, FEiH
TR FII., TTERRISESAT, RocksDBStateBackendiFIGIRS RiXRiniRIFA MR
gﬁo

o FILGFEBIFERRSHRATER, RocksDBStateBackend@— MNAEATEHEE,

TEERINIS N BEERS G

val env = StreamExecutionEnvironment.getExecutionEnvironment
val checkpointPath: String = 7?77

// new —RocksDBIRZS & i S5

val backend = new RocksDBStateBackend(checkpointPath)

// configure the state backend &'
env.setStateBackend(backend)

7.4.2 ERIRSIFE

E79RocksDBEEIRAIRSES S R FFIIIRFEFIME, FrLUASREREFRWEFERE. Flan:

e ValueStatefEHFihIAITRTERFIIN, EREMNSTEFTIL.

¢ RocksDBStateBackendfiListState7EiEBV{E < RIXIFABEFIRFBH#HITREIIE. BE, @
ListStateiiRINEEMEZE—MERNINRE, RARBEINNEZSERIL, MBNMIRATERERF
Hlik.

e MapStatefJRocksDBStateBackend RiHES ARSI HRMEFFIIES].  (AILARFIIEE
REFFICENERESRANE) .
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Z2HF,

o ft¥JRocksDBStateBackend3&iit, {5 Mapstate[X,Y] ZLY valuestate[Hashmap[X,Y]] BE
Ao
o MREFEFFIREIMOITTR, BRMAGIASIE, FPA Liststate[x] Etb

valuestate[List[X]] B,

LtEsh, BRI TFR—MASER, BRREARREHF IR,

7.4.3 BALIEIRTSHES

RN R FE BRI SIS TR SEE. NRMARS FEEMN, EEANRAESTEAXFFRTE
MRER, FRIEREBUEIEANBRHESIIRIR. AT HILNANEREFEREREmEMN, EHEF
KREHANFEEE, BTRSHEERNEFEN, FLIFlinkREEBiBERIASHBERE S

B, 8k, FFEERSEFEHEGIFBEFHRERSHRXMIEE, BREFSTREK.

RSTRBRI— M U RE 2R TRIEK.

Blan, FERESMR, SEEHE— session_id@B, ZBUE—RITEELNR. mHXMER
T, BEERRSHRESTRBERUS RIS, EERHEX, KESRENEX, (ERiITHA RN
WSERIBEMER. X NIRRT 2RI HIRE.

HEXMERBSEEREESD DataStreamAPIFIRIBEEF L, tbal: $H¥dKeyedStreamBIYARLEN
ERGEE, min. max. sumFZE, FiLl, EEAXEAEE N, —CEFERIEZAZTIR
1)1 =]

BAITLUBETIEMITATRE, FARRRIEREAY SSRGS IR

TEHEMIF. ERERE—/NTRIERHIFIEENEERIRE.
object statefulProcessFunction {

/** main() defines and executes the DataStream program */
def main(args: Array[string]) {

// set up the streaming execution environment
val env = ...

// ingest sensor stream
val sensorbData: DataStream[SensorReading] = ...

val keyedSensorbData: KeyedStream[SensorReading, String] =
sensorData.keyBy(_.id)

val alerts: DataStream[(String, Double, Double)] = keyedSensorbata
.process(new SelfCleaningTemperatureAlertFunction(1l.5))
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// print result stream to standard out
alerts.print()

// execute application
env.execute(''Generate Temperature Alerts")

class selfcleaningTemperatureAlertFunction(val threshold: Double)
extends KeyedProcessFunction[String, SensorReading, (String, Double,
Double)] {

// RE, HREGBAF E—NEE
private var lastTempState: ValueState[Double] = _

/7 RES, FREAE E— N THE 2% s a] 55
private var lastTimerState: ValueState[Long] = _

override def open(parameters: Configuration): Unit = {
// EMFERIIEA E— AR EIRES
val lastTempDescriptor = new ValueStateDescriptor[Double]("lastTemp",
classof[Double])

lastTempState = getRuntimeContext.getState[Double] (TastTempDescriptor)

// FEMFHRIGEA AT AR A
val timestampDescriptor: ValueStateDescriptor[Long]
= new ValueStateDescriptor[Long](
"timestampState", classof[Long])

lastTimerState = getRuntimeContext.getState(timestampDescriptor)

// AP PREL
override def processElement(
reading: SensorReading,
ctx: KeyedProcessFunction[String, SensorReading, (String, Double,
Double) J#Context,
out: Collector[(String, Double, Double)]): Unit = {

/7 VEEE R S R ik R B (]

val newTimer = ctx.timestamp() + (3600 * 1000)

// RECAHT T 3%

val curTimer = lastTimerState.value()

// MR ET T g R S R T g
ctx.timerService().deleteEventTimeTimer(curTimer)
ctx.timerService().registerEventTimeTimer(newTimer)
// HEFEHI g i A A B TastTimerstatelR4s E
lastTimerState.update(newTimer)

// RECE—/NERE, PSR S e 2 T R R
val lastTemp = TastTempState.value()
val tempDiff = (reading.temperature - TastTemp).abs
if (tempDiff > threshold) {
out.collect((reading.id, reading.temperature, tempDiff))



// EEE—ANRE
this.lastTempState.update(reading.temperature)

}

// VTETES B AT, XA R EH i %
override def onTimer(
timestamp: Long,
ctx: KeyedProcessFunction[String, SensorReading, (String, Double,
DoubTe)]#0OnTimercContext,
out: Collector[(String, Double, Double)]): Unit = {

[/ BB AN R B A WA R R S IR ES
lastTempState.clear()
lastTimerState.clear()
}
}

7.5 EFHBERESHA

MR EETHRRSREAL TERESHISEEEIEFERE. B, FNIEREFORNARE
WRATEHRES, AEXRBRE

FlinkiE@Bd = MR SLHARAN BT

1. AIEEE TN AERRER
2. BIEBhRAR
3. IMRTFRISENHRRR A HIN A,

EEREMERANRESFREN, FeclEH. hatEik, FinkSHFTE=MEH (REX=M
EHRREREREN)
o EAREMEMIFINERSHER TR AEE. XEERANATRMIET.

o MRARFHIFRE MRS,
o BUENRSRIERBEIRTHERRBRESINEEFIIRES (RESoRRILFRS)

7.5.1 (RIFMEIRSERRE

RN AER BRI ESIMERSHER THTTEN, BACKRESRESEEN, FETLMN
ERARERE.

NREANAFIFNERSEF, SRRERFMERIRES, WENREFREINAER, RS
WBAE. GhMINEFEIRE, EaRiath=)
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7.5.2 AR FBFRHIBRIRZES

ERLABES MR RS RN ARER. TLARRRENSFHNANEFHRERE—MRES. XMERT,
R RBIEB D IR T RS BT AN LA,

AANERT, FinkiSAeBd RBRERFRTESHMBRSHNARER, LBRELXRERFIONR
&, B2, JLFERALZEEE

7.5.3 (ZMEFHIRE
MRS RIS, ERIEMRSREHIEIRS.

—hRKiR, SREMIPIERANEN

o EENMUASRIEIBHEL, FlaNkEValueState[Int]EH/9ValueState[Double],
o EMUASIRIBAISEE, a0, i§ValueState[List[String]1EEXIAListState[String]

X FXFFRIENR, Flinks#H 70 R

* FlinkBREARZIFEARSIRIBRIZE

o HATIRAIFFIARFIMCANE. TESRSAIEIESEEL: Flink 1.770, WNREWEREUNE
M 9Apache Avro3B!, FHEFEHRREEZRIBAVroRIRIVECHINI MR ELE MR
AvroZEBY, FBASTIFEBUIRSAIEEEL,

7.6 A &Fi@FUIAE(queryable state)

TSN ARESHMNAEZ TSR, Apache FlinkiZ 7 AIERASAV Sk S HRIAA Lt
SER. EFlink, (HIRRSETLUEATERRSIARIRIT AR BRI BN BER.

7.6.1 IERARIRSIRSHISFEREINH

Flink@Y T EIRSIRSS R ="MBA AR
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lmﬁ”‘w;’% 3. Key [l is maintained by TaskManager

TaskManager 1

QSChentProxy |  QSServer QSClientProxy |  QSServer

4 Get State for Key Il
S. Return State for Keyl}

1. Get State for Key [l | |6. Serve State for Keyll

QCient
Application

¢ QueryableStateClient: 4MEBRIFE {EAQueryableStateClientSIRAZEIAFIFRENVGEER,

e QueryableStateClientProxy: QueryableStateClientProxyi&SHIBRQSClienthSigzR. &1
TaskManager EEREIT— M EFImUE. ERRESDHESNTaskManager, ElttClientProxyst
Aia)obManagers&BHIFEEEIHRPASHER N askManager £, ZAfFMEIXNaskManagerf
QSServer&ZiXiEK,

e QueryableStateServer: QueryableStateServerlifiZFimXIEANEK, T \TaskManager#p
IE{T— StateServer, ZServer NAHIRZSBIRIRAVEEIRT, FHEHEIREILQSClientProxy,

7.6.2 3P REVFINIS

IH—MNEETEARRSHURNARESS. FEMIHEEN —NMEERIRSHNRE, HEFSRS
5|AZal, J@FsetQueryable(String)/5iAFERSLAAAEIIN. W TFIF=

override def open(parameters: Configuration): uUnit = {

// BIERERIB T
val lastTempDescriptor = new ValueStateDescriptor[Double]("lastTemp",
classof[Double])

// AT EWPRE, IR E B AR IRST
lastTempDescriptor.setQueryable("lastTemperature")

// EMFERIEAARAS
lastTempState = getRuntimeContext.getState[Double] (TastTempDescriptor)
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BRIEZSN, FlinkiESZi5FI BEHECS R MBS HEEI TSRS+

val tenSecsMaxTemps: DataStream[(String, Double)] = sensorData
// project to sensor id and temperature
.map(r => (r.id, r.temperature))
// compute every 10 seconds the max temperature per sensor

.keyBy(_._1)
.timewindow(Time.seconds(10))
.max (1)

// store max temperature of the Tast 10 secs for each sensor
// in a queryable state
tenSecsMaxTemps

// key by sensor id

.keyBy(_._1)

.asQueryableState('maxTemperature™)

7.6.3 MIMNBERRE RS

FRAEFjvmER AL LA QueryableStateClient ZIFTEIE{TRIFlink AR RI ZIRTS.,

TEEMIF

object Temperaturebashboard {

// assume Tlocal setup and TM runs on same machine as client

val proxyHost = "127.0.0.1"

val proxyPort = 9069

// jobId of running QueryableStateJlob

// can be looked up in Togs of running job or the web UI

val jobId = "d2447b1la5e0d952c372064c886d2220a"

// how many sensors to query

val numSensors = 5

// how often to query the state

val refreshInterval = 10000

def main(args: Array[string]): uUnit = {
// configure client with host and port of queryable state proxy
val client = new QueryableStateClient(proxyHost, proxyPort)
val futures = new Array[

CompletableFuture[valueState[(String, Double)]]](numSensors)

val results = new Array[Double] (numSensors)
// print header Tine of dashboard table

val header = (for (i <- 0 until numSensors) yield "sensor_" + (i + 1)
.mkString("\t| ")

printin(Cheader)
// loop forever
while (true) {
// send out async queries
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for (i <- 0 until numSensors) {
futures(i) = queryState("sensor_" + (i + 1), client)
}
// wait for results
for (i <- 0 until numSensors) {
results(i) = futures(i).get().value()._2
}
// print result
val Tine = results.map(t => f"$t%1.3f").mkString("\t| ")
printin(line)
// wait to send out next queries
Thread.sleep(refreshiInterval)

}

client.shutdownAndwait()
}
def querysState(
key: String,
client: QueryableStateClient)
: CompletableFuture[valueState[(String, Double)]] = {

client
.getkvState[String, VvalueState[(String, Double)], (String, Double)](

JobID. fromHexstring(jobid), // jobid

"maxTemperature", //IREFERT

key, // it

Types.STRING, // Hl[g2sm

new ValueStateDescriptor[(String, Double)]( //IREHIATT
""" // state name not relevant here MiERELIRTLI, FHEHEIHZ
Types.TUPLE[(String, Double)]))

BeE EBIMNIRSR

HETLUEEEISAENRES T, (XGRS, WREE XZMEERSR. REFME. 1E51%5s|
(search indexes). EHHFE. HEMIEE., B—XRRXFHAENEFENHUEAMLHN, GRXEE
KOS, FEit, SSHMBEMREE ERIFSAEMENFERGERR.

EIRAIERFNApache FinKBEFAESEHCHEFHEE, MEAKBTFINIFERFKEBNSAEHE
iE. AL, MTERFinkXEFRESIENIERFSRR, RIE—EFTERNINBRFIEREIENEINERSE
SNEIERIEESRE AN IR —EaE03 B E ERRRIAPIZREEN.

8.1 AR —E RIS

BRI R AR — B T T Flink B ERNBIZ5h, R E SRR DS R A — L H bR
HESEERTEIES. BEiER, MAN—SMRERGT =08

o HEESHH
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o HiEFEERIRMHAEIEEE
o HEDEERSREHNBRSUEHEFESHS

8.1.1 HEiFE SRR A — B R

AT PN FREFREFER—REPIRS—EIERE, NANE SRR R AR R I & E
B.

o HEMIEERN, BEFERFEEFHEIREINMEIRATHCRERERFIATEFHRIREX
Lo ERRRA.

o MFREIEEERNNITFE:

o BEFNHREIER (SEEXMFTRANEERE)
o Kafka#iiFlR (SFMEEETAES XANENRRE)
o WIREERRERES TAFEMERSDUE, BALNARERHES—IRFIE.

EEMUBEEEN HEERNG, RTLURMES—RH—HIERE, NREFEBHERA—EIEHR
b&, BREAE SR DEERE R bR,

8.1.2 HiEiC i SRR A — B RIS

8.1.2.1 BFiES

RS WTRA—ARRE, ERERET, —XERNESSXER WEEHZWE—HAY, R
IZIRMENREEFM.

EEPHIRFEE
1. BERAE—TBARYNE—NERE, IEXARSI0FFRMITRRE, PALR LD
REEEIXINE +1 %
2. EMESZIRIES IR, —EITENHREEN—IRE, BBATICRMSBIAMEE bugHTEH1{T
K, EBRRZIO—IREL

FEFlinkepBA ) E R SR SRR N ARSI SRR IR B IR — IR — E T RIE.

FNEBERGF, RRBNERTZ MERSIIRSEEF BER— MR EFMEIEAEIECENR
HMERRGE. BRAFMNREELRIECEF P REFERRH Tupserti#EEBkeyREHFHE, &

fERtupdate, AFEHinsert) AT LURIERFE, EANT—MERRFKR, SIKIENSIE, &

LIRS E—k-VAT,

BERS:
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1. 2358, BB LAY —% ("sensor_1", 100.0) , AEXZICEHENT BEFER
7.

2. BREANZE, RETHIE, AARKSHEHESE —MYER, SI&EN, HELCEA
HT—%% ("sensor_1", 100.0) , AEXFZICREEENTREFHERSR.

3. (BRFEEZE, EAupsertiREREEFM, 1AM ("sensor_1", 100.0) SEAN—%
("sensor_1", 100.0) XE{EFERFKN, S —HFRY.

4. 181, FAIRINRIE T B —REI—E

8.1.2.2 H3HE

B M TIIRIIRER—XN—BMSERESHES. XENEARERRGIBEA T E—ATh
STERZ AN KIEEINERRSE.

HHTESFMES, ESUESHEERER, EEFRESREFMLINRR, AEASHIIKETEFH
.

Flinksh PSS AR DS

e write-ahead-log (WAL)EUEC
* FMEARZR(2PCOEHREIC

8.1.2.2.1 WAL

o WALEHEICKFIESEM RBEAIEFRS, A ERENE [RxliEHEBS el IRERLIND
o WALBRMRE, SJURNIHHIRERSIMIRS (RARSREFEREFIRETRY)
o BR, EARERMH100%8—EIERIE, FEEIMNTMAIPRESK/N.

8.1.2.2.2 2PC

o 2PCHRCREINBRFIRUITSAIZH.

s MTFHMIER, 2PCHURELCEMINBRFEN—INFS, FRAMERKEINCRENIIZES.
o IEWEINERTRRBHE, SRRES.

o 2PCHIMYUKIRTFFIinkEL BRI E A,

o KMERARFTILUEABMIESNIES
o FiEEFESXTHBEMIESMIIMobManager KB LIEERE(IHNRTIRE
o ffiskE)JobManagerfItSE REINAEHERIRRZEENES.

TRER 7 AEREAESIERSE DEEZRRAVER, SRRMH—EERE
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iR
i
iC
=M —
#BiC =
WALEHE =z %
iC
2PCHiRE e
iC =
8.2 AEEERS

AEEHIER

N
YN

B —XEERETRETS, SERIERNA—E, SEkERE,
ARSI —IR)

ED—IR(FE 00% RS —IRIRIE)

FEHE—IR

Apache Flinki{ft T SR BIERRRK NS MBRRIEEEIEI D SFI MR A B NEIE.

o {FKafkaiXtFAHEBIFISHBSEE LAIINBEER
o MEEI. XHRES. RERS. JEERFEENAIINERC

AT ENAPERXEERRS, (FREENARBINAIZIE B A,

8.2.1 Apache Kafka &iBiEEiEse

B BKafka

e Apache KafkaB— /Mo inibEES.,
o BHZOR— I RHREB-TIGERRR, ZERG ZHTEA(ngest)fIoK(distribute)5

.

o Kafka{GBHRARIFMBRIER.
o FME—TFEHHE(event log), BIRIEEHIRFF.
o BAITLBEBRBABIBR, XEDXDHE—TERT.
o BAFFRIEXRFENSE—kafkafEANARRSD KIEEENMEHBEFRIE. Kafkafts3 EAPisEEY

BT AIBIEE (offset),

Flink KafkaiZEiz28n] LAFHTIERSEER.

o BNMMIEREFESTLUM—NESAI KiZE.
o {E55 RIFE O XIZSEIEERE, FREICRIREEEET.
o NEPEHRER, (RBERINL, ESREIRERRBEIZDEMR.

El8-1 823 7 EERE FES DD XAIER
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Partition Offset
Partition 1

Source 1

Partition 2

Partition 3
Partition 4

Partition 5

Figure 8-1. Read offsets of Kafka topic partitions

THEHEBNHEIE—KafkadiEREZ=s

val properties = new Properties()
properties.setProperty("bootstrap.servers"”, "localhost:9092")
properties.setProperty("group.id", "test")
val stream: DataStream[String] = env.addSource(
new FlinkkafkaConsumer[String](

"topic", // LT

new Simplestringschema(), // /&4t

properties)) // W& Z#

8.2.2 Apache Kafka $fEiCi%i%ss

TEHEBNHEE—KafkaflE DEizes

val stream: DataStream[String] = ...
val myProducer = new FlinkkafkaProducer[String](

"localhost:9092", // brokerfkss a5
"topic", // H4ur3E

new SimpleStringSchema) // /74lik
stream.addsink(myProducer) // ¥ & NEHEIL
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8.2.2.1 Kafka#iEiCHZE L —IR(REE

Kafka# & CIELA T REERRRIER MEEED—IRIRILE:

* FlinkftEERNEIZFFER

» FrEHIEREHEESR

o IRBAKRMEY, HECERSFEMHRE (XETLULNBAEMARRE)

s HERZMNERZE, HIRECEERESFE Kafka BIMERTINCREEBE AT,

8.2.2.2 Kafka#iEiCAYFETR— IR IREE

KafkasZisHs31ES, FELFlinkAIKafkadE ChRESIRABHE—RAI—EILRIE. (ERH—IRIRER
HEENA#HES.2.2. 1589 L %M.

FlinkKafkaProducerf@ft T —MiE SemanticSEEIMIERE, IZHERET LAEHETE CIRHAT—EL
HRIERS!, ZECERTEINT:

e Semantic.NONE: IR EA—EMRIE——ICRegeaELTHZRXEAN
e Semantic. AT_LEAST_ONCE: EM—IXFRE, iIERA2EX, BOfEsES. XEWARE.
e Semantic.EXACTLY_ONCE: ¥Bif—IX{FiiE

8.2.2.3 CUSTOM PARTITIONING AND WRITING MESSAGE TIMESTAMPS

HEKafkaERSNHRRT, Flink Kafka#iiEREFES T LISFEZSNETENH DX,
o (RATLUBITIRMH— B E X AIFlinkKafkaPartitionerskizHIEEEIE M XAIHHTT .
o BUABRT, FlinkiEE MESMETEI— M Kaftkap X, BEiEk, BHE—MESAHNEICRE
BENER— K.

BT EREEEIC LRY setwriteTimestampTokafka(true) , AJLUGICRAYEHAIAES AKafka,

8.2.3 X RGERFIEEE

NHRGEEATURHEMLASFEAEEE. ARG, BB F AN EEFRY
SuEERISUEREE . B SRR HEII(@IApache ParquetatApache ORCHBSES, XHRFAALL
Bt ASITERSIZ@NApache Hive, Apache ImpalagiPresto)iRss. Ht, MHRFEHERT E
£ R IR RN R .

Apache FlinkRE T — " 4HEUERERS:, CXIFEE, AL hIEURERAEIERBNZIN
A, 5, BERSIFEMRBNHERS, LN RS, HDFS, S3FE,
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NHRGEIERIEIET N T

val lineReader = new TextInputFormat(null)
val lineStream: DataStream[String] = env.readFile[string](

TineReader, // The FileInputFormat SCfFHIAMSZ, FileInputFormat
2

"hdfs:///path/to/my/data", // The path to read %

FileProcessingMode.PROCESS_CONTINUOUSLY, // The processing mode AbFEiZ

30000L) // The monitoring interval in ms 3331 RN A]

FileProcessingMode2 BtRESIRANEEETC, BN TRFuERE

e TEPROCESS ONCEWEZINT, ZH{EIBRzhFEENAAILECAISART, SEEERRREIE—IX.
e 7EPROCESS_CONTINUOUSLYH, SERIMIEREVIGRIEAMRZE), HiFEaEBEifiiEse
X4,

8.2.4 X ZR BRI LS

BERERBAXMR—MELNER. BT ASHNAREE A RETAEERXG, FRRNAE
THIERIK, EtEiRCEZRERE SR RESREFMEI = 4.

SREU TR, X RREIECEESR T LN AR AR AR — IR RS

1. NFEFERE RS
2. B EIERE > FFEE

TEEENIEIE— NG RREIE LS

val input: DataStream[String] = ..
val sink: StreamingFileSink[String] = StreamingFileSink
.forrowFormat (
new Path("/base/path"), //#iliiiz
new SimpleStringEncoder[String] ("UTF-8")) //%il#s
.buildQO
input.addsink(sink)

RIS D RNBID I=RK
o HiERMHSAHZSME
o BRICRBEWDEE—ME+H
o B MEHMMEMERE TH— I FIEE

o MBRBERMIERE, FlinkiRESAHLEMNBIS ERoELESNE—MET,
o BMEPEES/ M partX¥

o F M bucketi R TR AEZ MpartXy

o XLpartX{HMEIECEFHISMESHEMEA.

o 4, BNMHTESTBEBHSEIRS N partSE.
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0 IXLLSHASIERRIZ: [base-path]/[bucket-path]/part-[task-idx]-[id]

o fitn, EAHEERS /johndoe/demo/ , HIRIUGRIZ/I part , NEETE /johndoe/demo/2018-
07-22-17/part-4-8 $8[[12018F7H22 3 NS AUX MEMN( /2018-07-22-17/), HEEANMEIL
ESHENRIEEENI( /part-4-8),

StreamingFileSinkiZfHt 7RIS A4HRISIET: {T9RESFIHEE4RED.

o EITRISEINP, BMCREW RMRIBAEENE— M part>X 4., 1B
StreamingFilesink.forRowFormat() 5 it 2EA{TIRIGED,

o AHERIDIEIH, SHRICRE—ERBATENE— M part> ., FHiTEH
StreamingFilesink.forBulkFormat() J5i&F 2 EREER

8.2.5 Apache Cassandra ${E;iCiEiE=s

Apache Cassandra2—fa {40y, BURNFIREFHEIEERZ.

o CassandralG&UEEEENHE SN EERIFIFTER A1 TZR(Cassandra models datasets as tables
of rows that consist of multiple typed columns.),

o AL NEZMIENRER) TR, BT LABTEFRlE—IirR.

e Cassandrafgfit 7 Cassandra&ifiE5(CQL), XE@—MRUsqliNiES, AT ESICRUKEIE.
&AM BRETREXT SR,

FlinkAYCassandraiEizes 20 LIRS IR—IRIRER

o CassandrafVEiEEARFER(K-VILH), Fre5RICassandrafJiR{EEMERupsertia (B
update, i&BHinsert), Fltt, EFCassandrafIEIELCENREERFN
o SitERY, AT ERMIERSEHBIEEARA—E, CassandraiEZesn LB S EFFRWALIE.

TEZMF

BYcEN — M Cassandrazkasts

// Bl
CREATE KEYSPACE IF NOT EXISTS example
WITH replication = {'class': 'SimpleStrategy', 'replication_factor': '1'};
// BlgEE
CREATE TABLE IF NOT EXISTS example.sensors (
sensorId VARCHAR,
temperature FLOAT,
PRIMARY KEY(sensorId)
);

THEERIAEtuple, case classZFZREIE N\ Cassandra
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val readings: DataStream[(String, Float)] = 777
// ARG S
val sinkBuilder: cCassandraSinkBuilder[(String, Float)] =
CassandraSink.addsink(readings)
// g
sinkBuilder
.setHost("localhost")
//CQL inserti&fy)
.setQuery("INSERT INTO example.sensors(sensorId, temperature) VALUES (?, ?);")
.buildQO

e E\tuple, case classEIEEEIEECQL INSERTEIA.

o IR CIEER M IPreparedStatement, Fi&tupledlcase classHIFEREEIRA
PreparedStatement/fy£44,

o FEREHMBSRISHN, F—MERERAE—SH.

THEHBRRIMIEPOJOE ACassandra

val readings: DataStream[SensorReading] = 777
CassandraSink.addsink(readings)
.setHost("localhost™)

.buildQO
@Table(keyspace = "example", name = "sensors')
class SensorReadings(

@column(name = "sensorid") var id: String,

@column(name "temperature") var temp: Float) {

def thisQ = {
0

this("", 0.0)

def setId(id: string): Unit = this.id = id
def getId: String = id

def setTemp(temp: Float): Unit = this.temp = temp
def getTemp: Float = temp

o FEEEILEMERMETPO)O=EREICassandraZl)

8.3 SLIMBEE X EEiFEREL

DataStream AP TAMEOREENXEIEREESS, X MEOEEHEMAIRIchFunctionifigks:

o SourceFunction I FIEHTIEURRIEESS
e ParallelSourceFunction BF 5 RNEITSMESHEURRIERES

XA MEORRISE—R, AR
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=8 ik

void

run()73i=RERPUTERRAISEHHEAN TR, FlinkaF—MEIINEE,
REEXNEAEFERrun(73E—X,

run(SourceContext<T>

ctx)

void cancel() TERLIEEMHEN

TEE—MEROAIT, TelE—MIEAIMOLEILong maxValuelIEE L SIRTERE
class CountSource extends SourceFunction[Long] {
var isRunning: Boolean = true

// SEBREE S TAE
override def run(ctx: SourceFunction.SourceContext[Long]): Unit = {

var cnt: Long = -1

whiTle (isRunning && cnt < Long.Maxvalue) {
// AW ++
cnt += 1
ctx.collect(cnt)

3
3

// ZabE R
override def cancel(): Unit = isRunning = false

8.3.1 AJEEREHEIFEEY

Flink REEfE SRR R RR S U N\ SRR 7 BEfR (LS — BRI,

o WMRINERERFRM T ENRBENEERBENAP, NEIEREFILAZRIBAEIE.

o UM XHERF. CREUUGRRBE, SRR REIENSEERIseekTTiE,

o FLtiN: Apache Kafka, EAEERIENSXRMREE, FILURES XANERE.,

* — I RflRweb socket, EM\WEERFIZEENE, HAEVAIEFRZMCIEIE EWERTFE
i

ZIFEMPNSIEREFESHERNG BS

o EARNERN, HEREFERAMIESANENREE.
o HIEIRSR, HEREFENGTINERIKERBESAH,

NEREIRRE T EZISEM, WHEESLHCheckpointedFunctioniZzM, BRfIFINT

// AIEEMSourceFunction
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class ReplayableCountSource extends SourceFunction[Long] with
CheckpointedFunction {

var isRunning: Boolean = true

var cnt: Long = _

// Rkt offsetF oINS

var offsetState: ListState[Long] = _

// LRI TAE

override def run(ctx: SourceFunction.SourceContext[Long]): Unit = {

whiTle (isRunning && cnt < Long.Maxvalue) {
/ /B, AR R PR i R AR I BB A2, BRARNESEEAT 1R b
ctx.getCheckpointLock.synchronized {
// increment cnt
cnt += 1
ctx.collect(cnt)

override def cancel(): Unit = isRunning = false

// R RN, XA T R R AR
override def snapshotState(snapshotCtx: FunctionSnapshotContext): Unit = {
// remove previous cnt
offsetsState.clear()
// add current cnt
offsetState.add(cnt)

// WA AR ST I 4 8 FH X AN T ik
override def initializeState(initCtx: FunctionInitializationContext): Unit = {
// obtain operator list state to store the current cnt
val desc = new ListStateDescriptor[Long] ("offset", classof[Long])
offsetState = initCtx.getOperatorStateStore.getListState(desc)
// MR s ST AT e R
// initialize cnt variable from the checkpoint
val it = offsetState.get()
cnt = if (null == it || !it.iterator().hasNext) {
-1L
} else {
it.iterator().next()

8.3.2 BETRAL. RIEIBER KL

DataStream AP IR 7 Ffh 75 Uk 52 B RS EIBEF N A Rk 7K (1% .

o FIEIBANKAIZAT LARE AT TimestampAssigner S ECFI4ERL
o AYEIEFNKAIZBET LA sourceFunction 2 ECFI4ERK,
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SourceFunctionfi sourcecContext XS T O EKAIZAIRT BB £

@Pub1icEvolving
void collectwithTimestamp(T element, Tong timestamp);

@PublicEvolving
void emitwatermark(watermark mark);

A HEAMUBESETF(ES HITLIE B partitiondT, {5 sourceFunction SRA KL {ER
BYHAY TimestampAssigner BBiF, BEARRERS.

8.4 LM B E UL AL

DataStream AP T SinkFunctioniZ O3k BENEHIECKEL. SinkFunctioniZORRE— A%

void invoke(IN value, Context, ctx)

TEREIERT—MEEBAISInkFunction, BIEREESEHBEANEEF.

// write the sensor readings to a socket

readings.addSink(new SimpleSocketSink("localhost", 9191))

// set parallelism to 1 because only one thread can write to a socket
.setParallelism(1)

* Writes a stream of [[SensorReading]] to a socket.
7':/
class SimpleSocketSink(val host: String, val port: Int)
extends RichSinkFunction[SensorReading] {

var socket: Socket =

var writer: PrintStream = _

/ /% B socketi#EEMwriter

override def open(config: Configuration): uUnit = {
// open socket and writer
socket = new Socket(InetAddress.getByName(host), port)
writer = new PrintStream(socket.getOutputStream)

}

//HwriterS5 A2k 4
override def invoke(
value: SensorReading,
ctx: SinkFunction.Context[_]): uUnit = {
// write sensor reading to socket
writer.printin(value.toString)
writer.flush(Q
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/ /R

override def close(): unit = {
// close writer and socket
writer.close()
socket.close()

AT LIREIRER—IRRE, SRR ERFISITRS, NEH(EEXER

8.4.1 FEFHEURE k=S

MBINBCRAHRINTANEE, SinkFunctioniZOt AT RS M HE L EZS
o HERUIEEBEIEMNR, LR LIVTESEN.

o WFITEE/MEESINE LMW FISRENNERER, Bl EEs0DIEo
R[N
o IMBERZIFIHEER, GIIXAREIEERFALULERTEE M (update ... where sensor_id =
XxX) BB AE T LAR B key B3

TEGIFER T ISR ER— N EEAISInkFunction, 1ZEREUGEHES N DBCEIRRE.

class DerbyUpsertSink extends RichSinkFunction[SensorReading] {

var conn: Connection = _
var insertStmt: PreparedStatement
var updateStmt: PreparedStatement

// Witk g tFinsertStmtHlupdateStmt
override def open(parameters: Configuration): Unit = {
// connect to embedded in-memory Derby
val props = new Properties()
conn = DriverManager.getConnection("jdbc:derby:memory:flinkExample", props)
// prepare insert and update statements
insertStmt = conn.prepareStatement(
"INSERT INTO Temperatures (sensor, temp) VALUES (?, ?)'")
updateStmt = conn.prepareStatement(
"UPDATE Temperatures SET temp = ? WHERE sensor = ?")

// SEBREIALERRR L e s il R MU
override def invoke(r: SensorReading, context: Context[_]): Unit = {
// set parameters for update statement and execute it
updatestmt.setbDouble(1l, r.temperature)
updateStmt.setString(2, r.id)
updatestmt.execute()
// execute insert statement if update statement did not update any row
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if (updatestmt.getUpdateCount == 0) {
// set parameters for insert statement
insertStmt.setString(1l, r.id)
insertStmt.setbouble(2, r.temperature)
// execute insert statement
insertStmt.execute()

}

}

// KW KilstmtFconn

override def close(): Unit = {
insertstmt.close()
updatestmt.close()
conn.close()

3
}

8.4.2 SRS MEURE DEERS

HTEUESEEUECAISEI, FlinkfDataStream APHEM T/ MENR, BTLUEIT LRI LEEMT SksCHT
BENFIELCEF, B MENRESSSIN 7 CheckpointListeneriZz3E ) obManager K BRI E R E T
BRAOESN

¢ GenericWriteAheadSinkiZiREFEBMIEREARNMEREAHEIIMNBRARICR, HiEE(]
FHEESIELCEFESHNEFRSYH. HESEERERTKBANN, BREETKIIBMMEER
[AEANANERBE NN RS,

e TwoPhaseCommitSinkFunctiontZiRFIAT/MBICEANESISE. NTFEMER, BEN
—NFES, HEXMEERERRNNEHEEANRIXANESF,

8.4.2.1 GenericWriteAheadSink(WAL)

GenericWriteAheadSinkE9 T/EAA0 T :

o EEATEEEEIINICRAIN(@append) EfE AN ERMES BR(segmented)iJwrite ahead log(WAL)
&,

s BXREIELCEFRIERERSREGT, BEFE— \Hilhsection, FELITABICRIEMNEFH
section,

o WALEAREFIREHEFE, JSERQERN, WALRKREESITZFE.

o HTFWALRILIEHIIMEIRE, FEHASELEHTER,

L GenericWriteAheadSinkIBIXF ETHIEE RANERIRT, BEBWALSXIRLIXMEE mAdsectionsh
FrEIERARIELEINERER S,

LFFEICREPEEINA S, GenericWriteAheadSinkiSERBMRRZIBENAMEE R, KBRS @I

MERIERL,
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o B4, HBELKRAFME X MIBRDRER 7 "XEIRRER.

o EUR, BMWALFRRHERXSRAIsectionFEE/EHR.

o IR REEEFFMEEFINSH. Bk, GenericWriteAheadSinkikiiiF—MRA
CheckpointCommitterfI BN B EFEIIEKIRZIER.

THEEEWIFIAGenericWriteAheadSinkKSELII— M NE S MEUR DiEEESS

avgTemp.transform(
"writeAheadsSink",
new StdoutwriteAheadsink)
// enforce sequential writing
.setParallelism(1)
ik
* Write-ahead sink that prints to standard out and commits checkpoints to the
local file system.
)

// GenericwriteAheadsinkili S/ EAEN =424
// 1 HATAEERAE B checkpointCommitter
// 2 TypeSerializer HikF¥ik
// 3 f%id
class stdoutwriteAheadSink extends GenericWriteAheadSink[(String, Double)](

// CheckpointCommitter that commits checkpoints to the local file system

new FileCheckpointCommitter(System.getProperty("java.io.tmpdir")),

// Serializer for records

createTypeInformation[(String, Double)].createSerializer(new
ExecutioncConfig),

// Random JobID used by the CheckpointCommitter

UUID.randomuUID.toString) {

// FHABRMFER LI sendvalues /72
override def sendvalues(
readings: Iterable[(String, Double)],
checkpointid: Long,
timestamp: Long): Boolean = {

for (r <- readings.asScala) {
// write record to standard out ¥ A\ S N BbRitEs A Gl zé A 2B 1)
// BATH AT LR Bl stdout i A R Il A Dl 5
printTn(r)

}

true

WRIAMA, GenericWriteAheadSinkARBER{100%AETHR—R—EIERIE, BRMENERSSHICHE
N Tk

o TEFEESSiEITsendValues() iR REE.

o IXRf, BfsectionFBRICREENTINBRFEZBRIREEA.
o REHRTHRERMERRER, IRER, HIECEBREANXPsectionFHIFTHICR.
o NMSHICRBIRKIE.



FrEICREWIERSA, sendValues(5i&iREtrue; {BE, EFERAM
CheckpointerCommitterZBikM, sk&ECheckpointerCommitterKgEiRMEE =, X, &
WEHAE, RFEXRANIX checkpointRINERREE, FHBIRBEANIX sectiondhHIFFHEICR,

8.4.2.1 TwoPhaseCommitSinkFunction(2PC)

TwoPhaseCommitSinkFunctionZiX#EsCI2 PCHNYaY,

EHIRCAIMBLRFARHENSE—MERZE, BEINBLESK LBSI—1ES.

X2Z EWEINFBICREBBENEIXNESH,
HJobManagerBRI—MEBRHELIBRERMNMIESSIEFEE, 2PCHYATREMERFFA.
H—REFRUERERDRMAN, EniclEFEREL B SRS, HE<ikz EMmjobManager
BIXHAER.

HHBLEFESEEEINERS RGN, EHEEFEESECINRT, ERTFERRES, H
#E5ERZ feM)obManager ZiEiRIAER.
JobManagerlZIFIFIAB RS T 2PCHMYAYERIRE, BIRICIESIAHEREEIRIZEHS, EH
YRR EMEIR CESEHEA THRESR. IR CIESSBFB— M SRS, B2
IERBANEIX MBS,

HJobManager MEREIES LIBNEIMGIAERNT, SHERERKEM RiEAMEITIHENE
%, BRI R F2PCHMYAcommitdn s,

LR CESIRIBMET, CRTNERIRAES.

LA TSR T BINES, 2PCHMYANERHEN T .

ZSCHR2PCHY, BFBEIMBCRITHE —LEK

HNERCRF L TURR TS TS,

ERERERE, FSLFIFHRZEERE.
FESUMEIINENERHREMARERE. TIKERBNERT, XOUREEE—LaE. NRE
WRFRAESGINEBI XA TES), RERAIEIEGER.
HMEBCRG BB IR IE R MR IREES.
RRXESUARTFRE——IINPLRRNIZEE IEEESCRRER, SEEERTLNIBER
£

TESEAIS2PCIERE— MRS L

class TransactionalFileSink(val targetPath: String, val tempPath: String)

// IN => (String, Double) HiAidzt(K2m

// TXT => String HERRFFHISEA

// CONTEXT => Void EFIHEM, voidfEAFE LT

extends TwoPhaseCommitSinkFunction[(String, Double), String, Void](
// ks
createTypeInformation[String].createSerializer(new ExecutionConfig),
// FEEtEE
createTypeInformation[Void].createSerializer(new ExecutionConfig)) {

var transactionwriter: Bufferedwriter = _

/7':7':
* T TR HT ST M R A I S
-.‘:/
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override def beginTransaction(): String = {

// path of transaction file is constructed from current time and task index

val timeNow = LocalDateTime.now(zZoneId.of("uUTC™))
.format(DateTimeFormatter.ISO_LOCAL_DATE_TIME)

val taskIdx = this.getRuntimeContext.getIndex0fThisSubtask

// X4 = B+ FE5d

val transactionFile = s"$timeNow-$taskIdx"

// O Rwrdter

val tFilePath = Paths.get(s"$tempPath/$transactionFile™)
Files.createFile(tFilePath)

this.transactionwriter = Files.newBufferedwriter(tFilePath)
printin(s"Creating Transaction File: $tFilePath")

[/ XAFBEARE]L, AN KR IRTE

transactionFile

/** Write record into the current transaction file. */
/% BB NBI AT SO/
override def invoke(transaction: String, value: (String, Double), context:
Context[_]): unit = {
transactionwriter.write(value.toString)
transactionwriter.write('\n')

/** Flush and close the current transaction file. */
override def preCommit(transaction: String): Unit = {
transactionwriter.flush()
transactionwriter.close()

/** Commit a transaction by moving the pre-committed transaction file
* to the target directory.
*/
/%% IR R I SO RS Bh 3 H AR BRI R IR AL H 5 */
override def commit(transaction: String): Unit = {
val tFilePath = Paths.get(s"$tempPath/$transaction")
// check if the file exists to ensure that the commit is idempotent.
if (Files.exists(tFilePath)) {
val cFilepath = Paths.get(s"$targetPath/$transaction")
Files.move(tFilePath, cFilePath)

/** Aborts a transaction by deleting the transaction file. */
/%% IR I I S N B R G P 2 5% */
override def abort(transaction: String): Unit = {
val tFilePath = Paths.get(s"$tempPath/$transaction")
if (Files.exists(tFilePath)) {
Files.delete(tFilePath)



8.5 RBAIMERRE S

BRT R (ngestEAR HemitEiER< /b, BEETESEFREREERESHRRES—FES
SMERTEERERENENSR. il BRI SONERS, ChRECERFETRETETIXIN S
FFHREERFE SREit.

WFIXEGE, REIENAZEEIM— M MapFunction, EASMECREAIINBRS, SFEiaRELE
B, FECRE, AREER, BAXMSIREIZI, BFEE— ) TE 0 IHIMNPRFRITMERE
SIEMNEFAIER(—MER/MIRSE KA NNEEEE), TMapFunctioniE KRS ERTFSSERE
%0

FlinkiZ2 7 AsyncFunctionRiEimizl/ OiFBAYZER, AsyncFunctionFH&ithZ XS N EiFHRE
AIET(IREEE.

THEIREZE AsyncFunction BYRES

trait AsyncFunction[IN, OUT] extends Function {
// input: #HAidE
// ResultFuture[oUT]: A Tiz[AIe&¥as R 52 Futurest R (A T AR [Fl— AN 575
def asyncInvoke(input: IN, resultFuture: ResultFuture[OUT]): Unit

}

TERERAMIEER AsyncFunction SR AEIHX R BEIEE(X EERADerbyEiEZE)

val readings: DataStream[SensorReading] = ??77
val sensorLocations: DataStream[(String, String)] =
AsyncDataStream
.orderedwait(

readings,

new DerbyAsyncFunction,

5, Timeunit.SECONDS, // timeout requests after 5 seconds

100) // at most 100 concurrent requests
[/ ..

class DerbyAsyncFunction extends AsyncFunction[SensorReading, (String, String)]

{

// caching execution context used to handle the query threads
private Tazy val cachingPoolExecCtx =
ExecutionContext.fromExecutor (Executors.newCachedThreadrPool())
// FTREERFuturef K 4511
private Tazy val directExecCtx =
ExecutionContext.fromeExecutor(
org.apache.flink.runtime.concurrent.Executors.directExecutor())

/** Executes JDBC query in a thread and handles the resulting Future
* with an asynchronous callback. */
override def asyncInvoke(

reading: SensorReading,
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resultFuture: ResultFuture[(String, String)]): Unit = {
val sensor = reading.id

// Bl#E—"Future, MEFEE IR roomfs &
val room: Future[String] = Future {
// Creating a new connection and statement for each record.
// Note: This is NOT best practice!
// Connections and prepared statements should be cached.
val conn = DriverManager
.getConnection("jdbc:derby:memory:flinkExample", new Properties())
val query = conn.createStatement()

// submit query and wait for result. this is a synchronous call.
val result = query.executeQuery(
S"SELECT room FROM SensorLocations WHERE sensor = '$sensor'")

// get room if there is one

val room = if (result.next()) {
result.getsString(l)

} else {
"UNKNOWN ROOM"

// close resultset, statement, and connection
result.close()

query.close()

conn.close()

// sleep to simulate (very) slow requests
Thread.sTeep(2000L)

// return room
room
}(cachingPoolExecCtx) // H - AZHUE MAREE

// ZiroomixX N FutureE Mt — =l
room.onComplete {
case Success(r) => resultFuture.complete(Seq((sensor, r)))
case Failure(e) => resultFuture.completeExceptionally(e)
}(directExecCtx)

e asyncinvoke()/5iAE% T BEZE LAY DBCEIA

o XUEDBCEIEIEIICachedThreadPoolfT,

e Future[Stringlix[A] DBCEIARVER.,

o BfE, BAAAFuturedIR (iR EEABAroomER)onComplete(BlE, FHIGEIDERIER
#4ResultFuture handler,

o IGEAER(EHBLSResultFuture handler2MDirectExecutorfhIBaY,

BE5—IRAIR, asyncInvoke FiZdBSHMEFRECEEXE, #HEHRTABN. INIECER
EEART FutureXIg kA HHEIKEEBK,
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